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HP-UX Programming

Introduction

This tutorial describes how to write programs that interface with the HP-UX operating system in
a non-trivial way. This includes programs that use files by name, that use pipes, that invoke other
commands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of the HP-UX
Reference manual. There is no attempt to be complete; only generally useful material is dealt
with. It is assumed that you will be programming in C, so you must be able to read the language
roughly up to the level of The C Programming Language. Some of the material in this tutorial
is based on topics covered more carefully there. You should also be familiar with HP-UX itself.
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Basics

Program Arguments

When a C program is run as a command, the arguments on the command line are made available
to the function main as an argument count argc and an array argv of pointers to character strings
that contain the arguments. By convention, argu[0] is the command name itself, so argc is almost
always! greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to the
terminal. (This is essentially the echo command.)

main(argc, argv) /* echo arguments */
int argc;
char *argvl[];

int i;

for (i = 1; i < arge; i++)
printf ("%slc", argv[il, (i<argc-1) ? * ’ : ’\n’);

}

argu is a pointer to an array whose individual elements are pointers to arrays of characters; each
is terminated by \0, so they can be treated as strings. The program starts by printing argu[1]
and loops until it has printed them all.

The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them, you must handle them like any other argument you
want to pass on.

1 Direct calls to exec(2) could violate this condition. Programs that use argv[0] usually assume that it is present, but this improper invocation
could cause strange failures.

2 HP-UX Programming



The “Standard input” and “Standard Output”

The simplest input mechanism is to read the “standard input”, which is generally the user’s
terminal. The function getchar returns the next input character each time it is called. A file
can be substituted for the terminal by using the < convention: if prog uses getchar, then the
command line

prog <file
causes prog to read file instead of the terminal. Prog itself need know nothing about where its

input is coming from. This is also true if the input comes from another program via the HP-UX
pipe mechanism:

otherprog | prog
provides the standard input for prog from the standard output of otherprog.

Getchar returns the value EOF when it encounters the end-of-file (or an error) on whatever you
are reading. The value of EOF is normally defined to be -1, but it is unwise to take any advantage
of that knowledge. As will become clear shortly, this value is automatically defined for you when
you compile a program, and need not be of any concern.

Similarly, putchar(c) puts the character ¢ on the “standard output”, which is also by default the
terminal. The output can be captured on a file by using >: if prog uses putchar,

prog >outfile
writes the standard output on outfile instead of the terminal. outfile is created if it doesn’t exist;
if it already exists, its previous contents are overwritten. And a pipe can be used:

prog | otherprog
puts the standard output of prog into the standard input of otherprog.
The function printf, which formats output in various ways, uses the same mechanism as putchar
does, so calls to printf and putchar can be intermixed in any order; the output will appear in the
order of the calls.
Similarly, the function scanf provides for formatted input conversion; it will read the standard

input and break it up into strings, numbers, etc., as desired. scanf uses the same mechanism as
getchar, so calls to them can also be intermixed.
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Many programs read only one input and write one output; for such programs I/O with getchar,
putchar, scanf, and printf may be entirely adequate, and it is almost always enough to get started.
This is particularly true if the HP-UX pipe facility is used to connect the output of one program to
the input of the next. For example, the following program strips out all ASCII control characters
from its input (except for newline and tab).

#include <stdio.h>

main() /* ccstrip: strip non-graphic characters */
{
int c;
while ((c = getchar(\|)) != EOF)
if ((c>= 7 " &k ¢ < 0177) || ¢ == >\t’ || ¢ == ’\n’)
putchar(c) ;
exit (0);
}
The line

#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usr/include/stdio.h) of standard routines and symbols that includes the definition of EOF.
If it is necessary to treat multiple files, you can use cat to collect the files for you:

cat filel file2 . . . | ccstrip >output
and thus avoid learning how to access files from a program. By the way, the call to exit at
the end is not necessary to make the program work properly, but it assures that any caller of

the program will see a normal termination status (conventionally 0) from the program when it
completes. Section 6 discusses status returns in more detail.
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The Standard 1/O Library

The “Standard 1/O Library is a collection of routines intended to provide efficient and portable
I/O services for most C programs. The standard I/O library is available on each system that
supports C, so programs that confine their system interactions to its facilities can be transported
from one system to another essentially without change.

In this section, we will discuss the basics of the standard I/O library. The appendix contains a
more complete description of its capabilities.

File Access

The programs written so far have all read the standard input and written the standard output,
which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is wc, which
counts the lines, words and characters in a set of files. For instance, the command

we X.c y.c
prints the number of lines, words and characters in x.c and y.c and the totals.

The question is how to arrange for the named files to be read — that is, how to connect the file
system names to the I/O statements that actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the standard
library function fopen. Fopen takes an external name (like x.c or y.c), does some housekeeping
and negotiation with the operating system, and returns an internal name which must be used in
subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains
information about the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being read or written, and the like. Users don’t need to know the
details, because part of the standard I/O definitions obtained by including stdio.h is a structure
definition called FILE. The only declaration needed for a file pointer is a line resembling:

FILE *fp, *fopen();

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE (FILE is a type
name, like int; not a structure tag).
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The actual call to fopen in a program is

£p = fopen(<name>, <mode>);

The first argument of fopen is the <name> of the file, as a character string. The second
argument is the <mode>, also as a character string, which indicates how you intend to use
the file. The only allowable modes are read (r) write (w) or append (a), and their updating
counterparts (r+, w+, and a+).

If you open a non-existent file for writing or appending, it is created (if possible). Opening an
existing file for writing causes the old contents to be discarded. Trying to read a file that does
not exist is an error, and there may be other causes of error as well (like trying to read a file
when you don’t have permission). If there is any error, fopen will return the null pointer value
NULL (defined in stdio.h).

The next thing needed is a way to read or write the file once it is open. There are several
possibilities, of which getc and putc are the simplest. getc returns the next character from a file;
it needs the file pointer to tell it what file. Thus

¢ = getc(fp)

places in c the next character from the file referred to by fp; it returns EOF when it reaches end
of file. putc is the inverse of getc:

putc(c, £fp)
puts the character c on the file fp and returns c. Getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are provided for
them. These files are the standard input, the standard output, and the standard error output; the
corresponding file pointers are called stdin, stdout, and stderr. Normally these are all connected
to the terminal, but can be redirected to files or pipes as described in the Basics section earlier
in this tutorial. Stdin, stdout and stderr are pre-defined in the I/O library as the standard input,
output and error files; they can be used anywhere an object of type FILE # can be. They are
constants, however, not variables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now write wc. The basic design is one
that has been found convenient for many programs: if there are command-line arguments, they
are processed in order. If there are no arguments, the standard input is processed. This way
the program can be used stand-alone or as part of a larger process.
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#include <stdio.h>

main(argc, argv) /* wc: count lines, words, chars */
int argc;

char *argv([];

o ¢

int ¢, i, inword;

FILE *fp, *fopen();

long linect, wordct, charct;

long tlinect = 0, twordct = O, tcharct = O;

if (argc > 1 & (fp=fopen(argv[i], "r")) == NULL) {
fprintf(stderr, "wc: can’t open %s\n", argv[il);
continue;
}
linect = wordct = charct = inword = O;
while ((c = getc(fp)) != EOF) {
charct++;
if (¢ == "\n’)
linect++;
if (c==" " |l ¢c=="\t" || ¢ == "\n’)
inword = 0;
. else if (inword == 0) {
inword = 1;
wordct++;
}
}
printf("%71d %71d %71d", linect, wordct, charct);
printf(argc > 1 ? " %s\n" : "\n", argv[il]);
fclose(fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;
} while (++i < argc);
if (argec > 2)
printf("%71d %71d %71d total\n", tlinect, twordct, tcharct);
exit(0);

The function fprintf is identical to printf except that the first argument is a file pointer that
specifies the file to be written.
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The function fclose is the inverse of fopen; it breaks the connection between the file pointer and
the external name that was established by fopen, freeing the file pointer for another file. Since
there is a limit on the number of files that a program can have open simultaneously, it’s a good
idea to release resources when they are no longer needed. There is also another reason to call
fclose on an output file — it flushes the buffer in which putc is collecting output (fclose is called
automatically for each open file when a program terminates normally).

Error Handling — Stderr and Exit

Stderr is assigned to a program in the same way that stdin and stdout are. Output written on
stderr appears on the user’s terminal even if the standard output is redirected. Wc writes its
diagnostics on stderr instead of stdout so that if one of the files can’t be accessed for some
reason, the message finds its way to the user’s terminal instead of disappearing down a pipeline
or into an output file.

The program actually signals errors in another way, using the function exit to terminate program
execution. The argument of exit is available to whatever process called it, so the success
or failure of a program can be tested by another program that uses it as a sub-process. By
convention, a return value of O signals that all is well; non-zero values signal abnormal situations.
The preceding example, wc, has only a one exit condition, so it provides no means for detecting
errors when it is used as a sub-process.

Exit itself calls fclose for each open output file, to flush out any buffered output, then calls
a routine named _exit. The function _exit causes immediate termination without any buffer
flushing; it can be called directly if desired. Use of _exit becomes necessary when terminating a
parent and child process because both processes set up variables and buffers that are duplicates
of each other. If _exit is not used during termination of at least one of the processes, both sets
of buffers are flushed, causing duplicate output.
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Miscellaneous 1/0 Functions

The standard 1/O library provides several other 1/O functions besides those previously illustrated.

Normally output with putc, etc., is buffered (except to stderr); to force it out immediately, use

fflush(fp).

Fscanf is identical to scanf, except that its first argument is a file pointer (as with fprintf) that
specifies the file from which the input comes; it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that the first argument
names a character string instead of a file pointer. The conversion is done from the string for
sscanf and into it for sprintf.

fgets(buf, size, fp) copies the next line from fp, up to and including a newline, into buf; at most
size-1 characters are copied; it returns NULL at end of file. fputs(buf, fp) writes the string in buf
onto file fp.

The function ungetc(c, fp) “pushes back” the character onto the input stream fp; a subsequent
call to getc, fscanf, etc., will encounter c. Only one character of push-back per file is permitted.
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Low-Level 1/0

This section describes the bottom level of I/O on the HP-UX system. The lowest level of I/O in
HP-UX provides no buffering or any other services; it is in fact a direct entry into the operating
system. You are entirely on your own, but on the other hand, you have the most control over
what happens. And since the calls and usage are quite simple, this isn’t as bad as it sounds.

File Descriptors

In the HP-UX operating system, all input and output is done by reading or writing files, because
all peripheral devices, even the user’s terminal, are files in the file system. This means that
a single, homogeneous interface handles all communication between a program and peripheral
devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of
your intent to do so, a process called “opening” the file. If you are going to write on a file, it
may also be necessary to create it. The system checks your right to do so (Does the file exist?
Do you have permission to access it?), and if all is well, returns a small positive integer called
a file descriptor. Whenever 1/O is to be done on the file, the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ(5, ...) and
WRITE(6, ...) in FORTRAN) All information about an open file is maintained by the system;
the user program refers to the file only by the file descriptor.

The file pointers discussed earlier are similar in spirit to file descriptors, but file descriptors are
more fundamental. A file pointer is a pointer to a structure that contains, among other things,
the file descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements exist
to make this convenient. When the command interpreter (the “shell”) runs a program, it opens
three files, with file descriptors O (stdin), 1 (stdout), and 2 (stderr), called the standard input,
standard output, and standard error. All of these are normally connected to the terminal, so
if a program reads file descriptor O and writes file descriptors 1 and 2, it can do terminal I/O
without needing to open extra files.
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If /0 is redirected to and from files with < and >, as in

prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Normally,
file descriptor 2 remains attached to the terminal so error messages can go there. In all cases,
the file assignments are changed by the shell; not by the program. The program does not need
to know where its input comes from nor where its output goes, as long as it uses file 0 for input
and 1 and 2 for output.

Read and Write

All input and output is done by two functions called read and write. For both, the first argument
is a file descriptor. The second argument is a buffer in your program where the data is to come
from or go to. The third argument is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n);

n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. (When the file is a terminal, read normally reads only up to the next
newline, which is generally less than what was requested.) A return value of zero bytes implies
end of file, and -1 indicates an error of some sort. For writing, the returned value is the number
of bytes actually written; it is generally an error if this isn’t equal to the number supposed to be
written.

The number of bytes to be read or written is quite arbitrary. The two most common values
are 1, which means one character at a time (“unbuffered”), and 512, which is a convenient
buffer size. Buffered 512-byte blocks are more efficient, but one-character-at-a-time 1/O is not
inordinately inefficient.!

! Some character special files insist on reads or writes of a specified or minimum size. Refer to the appropriate HP-UX Reference page
for more information.
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By combining these concepts, we can write a simple program to copy from a specified input
file to a specified output file. This program can copy almost anything to anything by specifying
redirected input and output files.

#define BUFSIZE 512 /* best size for HP-UX */
main() /* copy input to output */
{

char buf [BUFSIZE] ;
int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(1, buf, n);
exit (0);
}

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes to
be written by write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines like
getchar, putchar, etc. For example, here is a version of getchar which does unbuffered input.

#define CMASK 0377 /* for making char’s > 0 */
getchar () /* unbuffered single character input */

char c;

return((read(0, &c, 1) > 0) ? ¢ & CMASK : EOF);
}

¢ must be declared char, because read accepts a character pointer. The character being returned
must be masked with 0377 to ensure that it is positive; otherwise sign extension may make it
negative. (The constant 0377 is appropriate for HP computers, but not necessarily for other
computers and systems.)
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The second version of getchar does input in big chunks, and hands out the characters, one at a
time.

#define CMASK 0377 /* for making char’s > 0 */
#define BUFSIZE 512
getchar () /* buffered version */
{
static char buf [BUFSIZE] ;
static char *bufp = buf;
static int n = 0;
if (n ==0) { /* buffer is empty */
n = read(0, buf, BUFSIZE);
bufp = buf;

return((--n >= 0) ? *bufp++ & CMASK : EOF);

Open, Close, Unlink

Other than the default standard input, output and error files, you must explicitly open files in
order to read or write them. There are two system entry points for this, open and creat.

Open is rather like the fopen discussed in the previous section, except that instead of returning
a file pointer, it returns a file descriptor, which is just an int.

int f4;

fd = open(name, oflags);

As with fopen, the name argument is a character string corresponding to the external file name.
The oflags argument is different. It consists of one or more flags that are logical ORed to
indicate what types of file operations are to be allowed while the file is open. One of the three
flags O_RDONLY (open for read only), O_WRONLY (open for write only), or O_RDWR (open
for read/write) must be included. Refer to open(2) in the HP-UX Reference for a complete list
of flags, some of which can be changed while the file is open. open returns -1 if any error
occurs; otherwise it returns a valid file descriptor.

If you need to open a file that does not exist, use a third argument to specify the file mode as
follows:

fd = open(name, oflags, mode);
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As before, open returns a file descriptor if it was able to create the file called name, or -1 if not.
If the file already exists, open truncates it to zero length. Mode defines the access mode that is
to be assigned to the file if the file does not already exist.

In the HP-UX file system, mode defines nine bits of protection information associated with a
file that control read, write, and execute permission for the owner of the file, for the owner’s
group, and for all others. Thus a three-digit octal number is most convenient for specifying the
permissions. For example, 0755 specifies read, write and execute permission for the owner,
and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the HP-UX utility cp, a program which copies one
file to another. (The main simplification is that our version copies only one file and does not
permit the second argument to be a directory.)

#define NULL O
#define BUFSIZE 512

#define PMODE 0644 /* RW for owner, R for group, others */
main(argc, argv) /* cp: copy f1 to f2 */

int argc;

char *argv[];

{

int f1, £2, n;
char buf [BUFSIZE];

if (argc != 3)
error("Usage: cp from to", NULL);

if ((f1 = open(argv[1], O_RDONLY)) == -1)
error("cp: can’t open %s", argv[il]);
if ((£2 = creat(argv[2], O_WRONLY, PMODE)) == -1)

error("cp: can’t create %s", argv[2]);

while ((n = read(f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)
error("cp: write error", NULL);

exit(0);
}
error(sl, s2) /* print error message and die */
char *sl, *s2;
{
printf(sl, s2);
printf("\n");
exit(1);
}
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As we said earlier, there is a limit (typically 15-25) on the number of files which a program can
have open simultaneously. Accordingly, any program which intends to process many files must
be prepared to re-use file descriptors. The routine close breaks the connection between a file
descriptor and an open file, and frees the file descriptor for use with some other file. Termination
of a program via exit or return from the main program closes all open files.

The function unlink(<filename>>) removes the file <filename> from the file system.

Random Access — Lseek

File I/O is normally sequential: each read or write takes place at a position in the file right after
the previous one. When necessary, however, a file can be read or written in any arbitrary order.
The system call Iseek provides a way to move around in a file without actually reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position offset, which
is taken relative to the location specified by origin. Subsequent reading or writing will begin at
that position. offset is a long; fd and origin are ints. origin can be 0, 1, or 2 to specify that
offset is to be measured from the beginning, from the current position, or from the end of the
file respectively. For example, to append to a file, seek to the end before writing:

lseek(£fd, OL, 2);

To get back to the beginning (“rewind”),
1lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (long) 0.

With Iseek, it is possible to treat files more or less like large arrays, at the price of slower access.
For example, the following simple function reads any number of bytes from any arbitrary place
in a file.

get(fd, pos, buf, n) /* read n bytes from position pos */
int fd, n;
long pos;
char *buf;
{
lseek(fd, pos, 0); /* get to pos */
return(read(fd, buf, n));
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Error Processing

The routines discussed in this section, and, in fact, all routines that are direct entries into the
system can incur errors. Usually they indicate an error by returning a value of —1. Sometimes
it is nice to know what sort of error occurred, so an external variable errno is provided for that
purpose. Refer to errno(2) in the HP-UX Reference for a detailed listing of the possible values
of errno. Errno is not cleared when no error occurs, so it should not be used unless an error
has occurred. Error names are preferred. Avoid using actual error numbers contained in the file
/usr/include/errno.h.

Error names can be used by a program, for example, to determine whether an attempt to open a
file failed because it did not exist or because the user lacked permission to read it. Perhaps more
commonly, you may want to print the reason for failure. The routine perror prints a message
associated with the value of errno. More generally, sys_errno is an array of character strings
that can be indexed by errno and printed by your program.
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Processes

It is often easier to use a program written by someone else than to invent one’s own. This
section describes how to execute a program from within another.

The “System” Function

The easiest way to execute a program from another is to use the standard library routine system.
System takes one argument, a command string exactly as typed at the terminal (except for the
newline at the end) and executes it. For instance, to time-stamp the output of a program,

main()
{
system("date") ;
/* rest of processing */

}

If the command string has to be built from pieces, the in-memory formatting capabilities of sprintf
may be useful.

Remember that getc and putc normally buffer their input; terminal I/O will not be properly
synchronized unless this buffering is defeated. For output, use fflush; for input, see setbuf in the
appendix.

Low-Level Process Creation — Execl and Execv

If you’re not using the standard library, or if you need finer control over what happens, you will
have to construct calls to other programs using the more primitive routines that the standard
library’s system routine is based on.

The most basic operation is to execute another program without returning, by using the routine
execl. To print the date as the last action of a running program, use

execl("/bin/date", "date", NULL);

The first argument to execl is the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is,
the last component of the file name), but this is seldom used except as a place-holder. If the
command takes arguments, they are strung out after this; the end of the list is marked by a
NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits. There is
no return to the original program if exec succeeds.
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More realistically, a program might fall into two or more phases that communicate only through
temporary files. Here it is natural to make the second pass simply an exec! call from the first.

The one exception to the rule that the original program never gets control back occurs when
there is an error, for example if the file can’t be found or is not executable. If you don’t know
where date is located, say

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf (stderr, "Someone stole ’date’\n");

A variant of execl called execv is useful when you don’t know in advance how many arguments
there are going to be. The call is

execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array must be NULL
so execv can tell where the list ends. As with execl, filename is the file in which the program is
found, and argp[0] is the name of the program. (This arrangement is identical to the argv array
for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories — you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <, >, *, ?, and [] in the argument
list. If you want these, use execl to invoke the shell sh, which then does all the work. Construct
a string commandline that contains the complete command as it would have been typed at the
terminal, then say

execl("/bin/sh", "sh", "-c", commandline, NULL);
The shell is assumed to be at a fixed place, /bin/sh. lts argument —c says to treat the next

argument as a whole command line, so it does just what you want. The only problem is in
constructing the right information in commandline.
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Control of Processes — Fork and Wait

So far what we’ve talked about isn’t really all that useful by itself. Now we will show how to
regain control after running a program with execl or execv. Since these routines simply overlay
the new program on the old one, to save the old one requires that it first be split into two copies;
one of these can be overlaid, while the other waits for the new, overlaying program to finish.
The splitting is done by a routine called fork:

proc_id = fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the “process id.” In one of these processes (the “child”), proc_id
is zero. In the other (the “parent”), proc_id is non-zero; it is the process number of the child.
Thus the basic way to call, and return from, another program is

if (fork() == 0)
execl("/bin/sh", "sh", "-c", cmd, NULL); /* in child %/

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the
program. In the child, the value returned by fork is zero, so it calls execl which does the
command and then dies. In the parent, fork returns non-zero so it skips the execl. (If there is
any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing itself. This can
be done with the function wait:

int status;

if (fork() == 0)
execl(. . .);
wait (&status) ;

This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork, or the
possibility that there might be more than one child running simultaneously. (The wait returns the
process id of the terminated child, if you want to check it against the value returned by fork.)
Finally, this fragment doesn’t deal with any funny behavior on the part of the child (which is
reported in status). Still, these three lines are the heart of the standard library’s system routine,
which we’ll show in a moment.

The status returned by wait encodes in its low-order eight bits the system’s idea of the child’s
termination status; it is O for normal termination and non-zero to indicate various kinds of
problems. The next higher eight bits are taken from the argument of the call to exit which
caused a normal termination of the child process. It is good coding practice for all programs to
return meaningful status.
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When a program is called by the shell, the three file descriptors 0, 1, and 2 (stdin, stdout, and
stderr) are set up pointing at the right files, and all other possible file descriptors are available
for use. When the program called by the shell calls another program, correct etiquette suggests
making sure the same conditions hold. Open files are not affected in any way by fork or exec
calls unless the close-on-exec flag has been set (see fcntl(2) in the HP-UX Reference). If the parent
is buffering output that must come out before output from the child, the parent must flush its
buffers before the execl. Conversely, if a caller buffers an input stream, the called program will
lose any information that has been read by the caller.

Pipes
A pipe is an I/O channel intended for use between two cooperating processes: one process

writes into the pipe, while the other reads. The system looks after buffering the data and
synchronizing the two processes. Most pipes are created by the shell, as in

1s | pr

which connects the standard output of Is to the standard input of pr. Sometimes, however, it is
most convenient for a process to set up its own plumbing; in this section, we will illustrate how
the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int f£d[2];

stat = pipe(£d);
if (stat == -1)
/* there was an error . . . %/

Fd is an array of two file descriptors, where fd[0] is the read side of the pipe and fd[1] is for
writing. These can be used in read, write and close calls just like any other file descriptors.

If O_NDELAY is not set (see read(2) and write(2) in HP-UX Reference) and a process reads a
pipe which is empty, the process will wait until data arrives; if a process writes into a pipe that
is too full, the process will wait until the pipe empties somewhat. If the write side of the pipe is
closed, a subsequent read will encounter end of file. If O_NDELAY is set, read and write both
return immediately with the value 0.
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To illustrate the use of pipes in a realistic setting, let us write a function called popen(cmd, mode),
which creates a process cmd (just as system does), and returns a file descriptor that will either
read or write that process, according to mode. That is, the call

fout = popen("pr", WRITE);

creates a process that executes the pr command; subsequent write calls using the file descriptor
fout will send their data to that process through the pipe.

Popen first creates the the pipe with a pipe system call; it then forks to create two copies of
itself. The child decides whether it is supposed to read or write, closes the other side of the pipe,
then calls the shell (via execl) to run the desired process. The parent likewise closes the end
of the pipe it does not use. These closes are necessary to make end-of-file tests work properly.
For example, if a child that intends to read fails to close the write end of the pipe, it will never
see the end of the pipe file, just because there is one writer potentially active.

#include <stdio.h>

#define READ O

#define WRITE 1

#define tst(a, b) (mode == READ ? (b) : (a))
static int popen_pid;

popen(cmd, mode)

char *cmd;
int mode;
{

int p[2];

if (pipe(p) < 0)
return(NULL) ;

if ((popen_pid = fork()) == 0) {
close(tst (p[WRITE], p[READ]));
close(tst (0, 1));
dup(tst (p[READ], p[WRITE]));
close(tst (p[READ], p[WRITE]));

execl("/bin/sh", "sh", "-c", cmd, 0);

_exit(1); /* disaster has occurred if we get here */
}
if (popen_pid == -1)

return(NULL) ;
close(tst (p[READ], p[WRITE]));
return(tst (p[WRITE], p[READ]));
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The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first close closes the write side of the
pipe, leaving the read side open. The lines

close(tst(0, 1));
dup (tst(p[READ], p[WRITE]));

are the conventional way to associate the pipe descriptor with the standard input of the child.
The close closes file descriptor 0, that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor 0; thus the read side of the pipe becomes the standard
input. (Yes, this is a bit tricky, but it’s a standard idiom.) Finally, the old read side of the pipe
is closed.

A similar sequence of operations takes place when the child process is supposed to write from
the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by popen.
The main reason for using a separate function rather than close is that it is desirable to wait
for the termination of the child process. First, the return value from pclose indicates whether
the process succeeded. Equally important when a process creates several children is that only
a bounded number of unwaited-for children can exist, even if some of them have terminated;
performing the wait lays the child to rest. Thus:

#include <signal.h>

pclose(fd) /* close pipe fd */

int £d4;

{
register r, (xhstat)(), (*#istat) (), (*gstat)();
int status;
extern int popen_pid;

close(fd);
istat = signal (SIGINT, SIG_IGN);
gstat = signal (SIGQUIT, SIG_IGN);
hstat = signal (SIGHUP, SIG_IGN);
while ((r = wait(&status)) != popen_pid && r != -1);
if (r == -1)
status = -1;

signal (SIGINT, istat);
s8ignal (SIGQUIT, gstat);
signal (SIGHUP, hstat);
return(status);
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The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this is
the topic of the next section.

The routine as written has the limitation that only one pipe can be open at once, because of the
single shared variable popen_pid; it really should be an array indexed by file descriptor. A popen
function, with slightly different arguments and return value is available as part of the standard
I/0 library discussed below. As currently written, it shares the same limitation.

Signals - Interrupts and All That

This section is concerned with how to deal gracefully with signals from the outside world (like
interrupts), and with program faults. Since there’s nothing very useful that can be done from
within C about program faults, which arise mainly from illegal memory references or from
execution of peculiar instructions, we’ll discuss only the outside-world signals:

Interrupt Sent when the Interrupt character is typed (user selectable, usually DEL);

Quit Generated by the Quit character (user selectable, usually File Separator char-
acter obtained by (\]);

Hangup Caused by hanging up the phone; and

Terminate Generated by the kill command.

Unless other arrangements have been made (see setpgrp(2) and signal(2)), when one of these
events occurs, the signal is sent to all processes that were started from the corresponding
terminal, terminating the process(es). In the quit case, a core image file is written for debugging
purposes.

The routine that alters the default action is called signal. It has two arguments: the first specifies
the signal while the second specifies how to treat it. The first argument is just a number code;
the second is an address consisting of either a function or a code requesting that the signal either
be ignored or that it be given the default action. The include file signal.h provides names for
the various arguments, and should always be included when signals are used. Thus,

#include <signal.h>

signal (SIGINT, SIG_IGN);
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causes interrupts to be ignored, while

signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal returns the previous value
of the signal catcher. The second argument to signal can be the name of a function (which has
to be declared explicitly if the compiler hasn’t seen it already). In this case, the named routine
will be called when the signal occurs. Most commonly this facility is used to allow the program
to clean up unfinished business before terminating, for example to delete a temporary file:

#include <signal.h>

main()
{

int onintr();

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);

/* Process . . .*/
exit (0);

}

onintr( )

{
unlink(tempfile);
exit(1);

}

Why the test and the double call to signal? Recall that signals like interrupt are sent to all
processes started from a particular terminal. Accordingly, when a program is to be run non-
interactively (started by &lt), the shell turns off interrupts for it so it won’t be stopped by
interrupts intended for foreground processes. If this program began by announcing that all
interrupts were to be sent to the onintr routine regardless, that would undo the shell’s effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore
interrupts if they are already being ignored. The code as written depends on the fact that signal
returns the previous state of a particular signal. If signals were already being ignored, the process
should continue to ignore them; otherwise, they should be caught.
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A more sophisticated program may wish to intercept an interrupt and interpret it as a request
to stop what it is doing and return to its own command-processing loop. Think of a text editor:
interrupting a long printout should not cause it to terminate and lose the work already done.
The outline of the code for this case is probably best written like this:

#include <signal.h>
#include <setjmp.h>

jmp_buf

sjbuf;

main( )

{
int (*istat) ( ), onintr( );
istat = signal (SIGINT, SIG_IGN); /* save original status */
setjmp(sjbuf) ; /* save current stack position */

if (istat != SIG_IGN)
signal (SIGINT, onintr);

/* main processing loop */

}

onintr( )
{
printf ("\nInterrupt\n");
longjmp(sjbuf) ; /* return to saved state */

The include file setimp.h declares a type jmp_buf which is an object in which the state can be
saved. sjbuf is an object of type jmp_buf where the setimp routine saves the state of things.
When an interrupt occurs, a call is forced to the onintr routine, which can print a message, set
flags, or whatever. Longjmp takes as argument an object containing information placed there by
setimp, and restores control to the location after the call to setimp, such that control (and the
stack level) pop back to the place in the main routine where the signal is set up and the main
loop entered. Note, incidentally, that the signal gets set again after an interrupt occurs. This is
necessary because most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary point, such as
while updating a linked list. If the routine called on occurrence of a signal sets a flag then returns
instead of calling exit or longjmp, execution continues exactly where the interrupt occurred. The
interrupt flag can then be tested later.
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There is one difficulty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and
returns. If it were really true, as we said above, that “execution resumes at the exact point it
was interrupted”, the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, since the user might not know that the program
is reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after
the signal, returning an error code which indicates what happened.

Thus, programs that catch and resume execution after signals should be prepared for “errors”
caused by interrupted system calls (the ones to watch out for are reads from a terminal, wait,
and pause). A program whose onintr program only sets intflag, resets the interrupt signal, then
returns, should usually include code like the following when it reads the standard input:

if (getchar( ) == EOF)
if (intflag)
/* EOF caused by interrupt */
else
/* true end-of-file */

Another aspect of error handling that must be dealt with is associated with programs where the
user has elected to catch an asynchronous signal such as an interrupt or quit signal, and the signal
occurs during a system call, producing the error EINTR. If execution is resumed after processing
the signal, it will appear as if the interrupted system call returned the EINTR error unless the
system call is restarted. Refer to siguvector(2) in the HP-UX Reference for more information.

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts, and also includes a method
(like “!” in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork( ) == 0)

execl(. . . );
8ignal (SIGINT, SIG_IGN); /* ignore interrupts */
wait (&status) ; /* until the child is done */
8ignal (SIGINT, onintr); /* restore interrupts */
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Why is this? Again, it’s not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop, and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard 1/O library function system:

#include <signal.h>

system(s) /* run command string s */
char *s;
{

int status, pid, w;

register int (xistat)( ), (*gstat)( );

if ((pid = fork( )) == 0) {

execl("/bin/sh", "sh", "-c", s, 0);
_exit (127) ;
}
istat = signal (SIGINT, SIG_IGN);
gstat = signal(SIGQUIT, SIG_IGN);
while ((w = wait(&status)) != pid && w != -1)
if (w == -1)

status = -1;
signal (SIGINT, istat);
8ignal (SIGQUIT, gstat);
return(status) ;

}

As an aside on declarations, the function signal obviously has a rather strange second argument.
It is in fact a pointer to a function delivering an integer, and this is also the type of the signal
routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are chosen so
they coincide with no possible actual functions.
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Appendix - The Standard 1/0 Library

The standard I/O library was designed with the following goals in mind.

e It must be as efficient as possible, both in time and in space, so that there will be no
hesitation in using it no matter how critical the application.

e [t must be simple to use, and also free of the magic numbers and mysterious calls whose
use mars the understandability and portability of many programs using older packages.

e The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
one upon which the program was written.

General Usage

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no
special library argument is needed for loading. All names in the include file intended only for
internal use begin with an underscore (_) to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are

stdin The name of the standard input file

stdout The name of the standard output file

stderr The name of the standard error file

EOF is actually —1, and is the value returned by the read routines on end-of-ile or
error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate
an error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to
streams.
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BUFSIZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user.
See setbuf, below.

getc, are defined as macros. Their actions are described below; they are mentioned
getchar, here to point out that it is not possible to redeclare them and that they are not
putc, actually functions; thus, for example, they cannot have breakpoints set on them.
putchar, Also, watch out for side-effects if an expression is used as an argument because it

feof, ferror, might get evaluated more than once, producing rather bizarre (and very incorrect)
fileno results.

The routines in this package offer the convenience of automatic buffer allocation and output
flushing where appropriate. The names stdin, stdout, and stderr are, in effect, constants and
cannot be assigned to.

Calls

FILE *fopen(<filename>, <type>) char *<filename>, *<type>;
opens the file and, if needed, allocates a buffer for it. <filename> is a character
string specifying the name. <type> is a character string (not a single character).
It can be “r”, “w”, or “a” to indicate intent to read, write, or append. The value
returned is a file pointer. If it is NULL, the attempt to gpen failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;
closes the stream named by ioptr, if necessary, then reopens it as if by fopen. If
the attempt to open fails, NULL is returned. Otherwise ioptr, now refers to the
new file. Often the reopened stream is stdin or stdout.

FILE *fdopen (fildes, type) int fildes; char *type;
associates the stream named by ioptr with a file descriptor obtained from open,
dup, creat, or pipe(2) which open files but do not return pointers to a stream FILE
structure ioptr. Streams are required input for several library routines described
in Section 3 of the HP-UX Reference.

int getc(ioptr) FILE *ioptr;
returns the next character from the stream named by <ioptr>, which is a pointer
to a file such as returned by fopen, or the name stdin. The integer EOF is returned
on end-offile or when an error occurs. The null character is a legal character.

int fgetc(ioptr) FILE *ioptr;

acts like getc but is a genuine function, not a macro, so it can be pointed to,
passed as an argument, etc.
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putc(c, ioptr) FILE #*ioptr;
writes the character ¢ on the output stream named by ioptr, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as
value, but EOF is returned on error.

fputc(c, ioptr) FILE *ioptr;
acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
closes the file corresponding to ioptr after any buffers are emptied. Any buffering
allocated by the 1/O system is freed. fclose is automatic on normal termination
of the program.

fflush(ioptr) FILE *ioptr;
writes out any buffered information on the (output) stream named by ioptr. Output
files are normally buffered if and only if they are not directed to the terminal;
however, stderr always starts off unbuffered and remains so unless setbuf is used,
or unless it is reopened.

exit(errcode) ;
terminates the process and returns its argument as status to the parent. This is a
special version of the routine which calls fflush for each output file. To terminate
without flushing, use _exit.

feof (ioptr) FILE *ioptr;
returns non-zero when end-of-ile has occurred on the specified input stream.

ferror(ioptr) FILE *ioptr;
returns non-zero when an error has occurred while reading or writing the named
stream. The error indication lasts until the file has been closed.

getchar( );
is identical to getc(stdin).

putchar(c) ;
is identical to putc(c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n—1 characters from the stream ioptr into the character pointer s.
The read terminates with a newline character. The newline character is placed
in the buffer followed by a null character. Fgets returns the first argument, or
NULL if error or end-of-file occurred.
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fputs(s, ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array) s on the stream ioptr. No
newline is appended. No value is returned.

ungetc(c, ioptr) FILE *ioptr;
pushes the argument character ¢ back on the input stream named by ioptr. Only
one character can be pushed back.

printf (format, al, . . . ) char *format;
fprintf (ioptr, format, al, . . . ) FILE *ioptr; char *format;
sprintf(s, format, al, . . . )char *s, *format;

printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifica-
tions are as described in section printf (3) of the HP-UX Reference.

scanf (format, al, . . . ) char *format;
fscanf (ioptr,\ format,\ ai, . . . ) FILE *ioptr; char *format;
sscanf (s, format, al, . . . ) char *s, *format;

scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from the character string supplied as s. Scanf reads characters,
interprets them according to a format, and stores the results in its arguments.
Each routine expects as arguments a control string format, and a set of arguments,
each of which must be a pointer, indicating where the converted input should
be stored.

Scanf returns as its value the number of successfully matched and assigned input
items. This can be used to decide how many input items were found. On end
of file, EOF is returned; note that this is different from 0, which means that the
next input character does not match what was called for in the control string.

fread(ptr, sizeof (xptr), nitems, ioptr) FILE *ioptr;
reads nitems of data beginning at ptr from file ioptr. No advance notification that
binary I/O is being done is required; when, for portability reasons, it becomes
required, it will be done by adding an additional character to the mode-string on
the fopen call.

fuwrite(ptr, sizeof (*ptr), nitems, ioptr) FILE *ioptr;
like fread, but in the other direction.

rewind(ioptr) FILE *ioptr;

rewinds the stream named by ioptr. It is not very useful except on input, since a
rewound output file is still open only for output.
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system(string) char *string;
string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE *ioptr;
returns the next 32-bit word from the input stream named by ioptr. EOF is
returned on end-offile or error, but since this a perfectly good integer feof and
ferror should be used.

putw(w, ioptr) FILE *ioptr;
writes the integer w on the named output stream.

setbuf (ioptr, buf) FILE *ioptr; char *buf;
setbuf can be used after a stream has been opened but before 1/0 has started.
If buf is NULL, the stream will be unbuffered. Otherwise the buffer supplied will
be used. It must be a character array of sufficient size: char buf [BUFSIZ];

int setvbuf(ioptr, buf, type, size) FILE *ioptr; char *buf; int type, size;
setvbuf can be used after a stream has been opened but before [/O has started.
Type defines the type of buffer to be used: fully buffered, line buffered, or
completely unbuffered; while size defines the buffer size. See setbuf(3S) in HP-
UX Reference for more information.

fileno(ioptr) FILE *ioptr;
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;
adjusts the location of the next byte in the stream named by ioptr. offset is a long
integer. If ptrname is 0, the offset is measured from the beginning of the file; if
ptrname is 1, the offset is measured from the current read or write pointer; if
ptrname is 2, the offset is measured from the end of the file. The routine accounts
properly for any buffering. (When this routine is used on HP-UX systems, the
offset must be a value returned from ftell and the ptrname must be 0).

long ftell(ioptr) FILE *ioptr;
returns the byte offset (measured from the beginning of the file) associated with
the named stream. Any buffering is properly accounted for. (On HP-UX systems
the value of this call is useful only for handing to fseek, so as to position the file
to the same place it was when ftell was called.)

getpw(uid, buf) char *buf;
searches the password file for the given integer user ID. If an appropriate line is
found, it is copied into the character array buf, and 0 is returned. If no line is
found corresponding to the user ID then 1 is returned.
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char *malloc(num) ;
allocates num bytes. The pointer returned is sufficiently well aligned to be usable
for any purpose. NULL is returned if no space is available.

char *calloc(num, size);
allocates space for num items each of size size. The space is guaranteed to be
set to 0 and the pointer is sufficiently well aligned to be usable for any purpose.
NULL is returned if no space is available .

cfree(ptr) char *ptr;
Space is returned to the pool used by calloc. Disorder can be expected if the

pointer was not obtained from calloc.

The following are macros whose definitions can be obtained by including <ctype.h>.

isalpha(c) returns non-zero if the argument is alphabetic.

isupper(c) returns non-zero if the argument is uppercase alphabetic.

islower(c) returns non-zero if the argument is lowercase alphabetic.

isdigit(c) returns non-zero if the argument is a digit.

isspace(c) returns non-zero if the argument is a spacing character such as tab, space

(blank), newline, vertical tab, form-feed, or other white-space character.

ispunct(c) returns non-zero if the argument is any punctuation character, i.e., not a space,
letter, digit or control character.

isalnum(c) returns non-zero if the argument is a letter or a digit.

igprint(c) returns non-zero if the argument is printable-a letter, digit, or punctuation
character.

iscntrl(c) returns non-zero if the argument is a control character.

isascii(c) returns non-zero if the argument is an ASCII character, i.e., less than octal
0200.

toupper (c) returns the uppercase character corresponding to the lowercase letter c.

tolower(c) returns the lowercase character corresponding to the uppercase letter
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Using C Library Routines

The purpose of this tutorial is to illustrate the use of the most commonly used library routines
described in Section 3 of the HP-UX Reference manual. Examples are included to demonstrate
programming techniques.

This article assumes that you have a working knowledge of the C programming language. No
attempt is made here to explain or teach C programming techniques, other than those that are
relevant to a particular library routine.
Material is presented in three sections, each dealing with the following topics in the order listed:
e Standard Input/Output Routines,
o Math Routines, including trigonometric and other functions, and

o String Manipulation Routines.
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Part 1: |
Standard Input/Output Routines

There are more library routines in this category than in any other. Described under this heading
are routines that perform all kinds of input and output, from single characters to entire strings.
Also described are routines that adjust 1/O buffering, routines that enable input from or output
to files, and routines that enable random access to data. These routines require that the include
file stdio.h be #included in C programs containing calls to them.

The standard [/O routines are inseparably linked with files. A file must be opened before its
contents can be used. Three “files” are automatically opened for you by the system. Including
stdio.h in your program assigns buffering to them. These three “files” are the standard input,
standard output, and standard error files. Their names are stdin, stdout, and stderr, respectively.

Actually, it is more accurate to think of these “files” as pipes connecting two points. Each pipe
accepts data at one end, and transfers the data to its destination at the other end. These pipes
have only limited ability to store data. Once a certain number of bytes have been written into
the pipe, data must be read from the other end before the pipe can accept more data. Writing
data into a pipe is analogous to pumping water into a pipeline. The pipeline is able to hold
some water, but if the valve at the receiving end of the pipe is shut, the pipeline is soon unable
to hold any more water. Opening the valve is analogous to reading data from the pipe. Once
water has been removed from the pipeline, more water can be pumped in at the source.

Once a certain volume of water has been allowed to flow out of a pipeline, that same water
no longer exists in the pipeline. This is also true for data that has been received from stdin,
stdout, and stderr. Reading data from stdin, for instance, removes that data from stdin. You
can see that stdin, stdout, and stderr are very different from ordinary files. Not only can they
store small amounts of data, but that data exists only until it is read (unless it is “pushed back”
—— see Character Push-Back later in this article).

Stdin is opened for reading. This means that your program can only receive data from stdin; it
cannot write data into it. By default, stdin’s source of data is your terminal’s keyboard. Thus,
whatever you type at your keyboard provides the data that flows through stdin and becomes
available to your program at the other end. By default, stdin is buffered via a buffer containing
exactly BUFSIZ bytes, where BUFSIZ is a constant defined in stdio.h. For Series 200 and
Series 500 computers, BUFSIZ is 1024. Due to terminal driver characteristics, data you type
in at your keyboard is not available to a program until you press (or its equivalent).
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Stdout is opened for writing, which means that your program is the source of data for stdout.
Your program cannot, however, read data from stdout. By default, the destination of stdout is
your terminal’s screen. Thus, data fed into stdout appears on your screen. Stdout is typically
used for all output that arises from successful execution of a program (status reports, lists of
tasks being performed, etc.). Like stdin, stdout is buffered via a buffer containing BUFSIZ bytes.

Stderr is also opened for writing, allowing your program to feed data into it, but disallowing
reading. Just like stdout, stderr’s destination is your terminal’s screen by default. Stderr is
typically used to output data which arises from an erroneous condition in a program, such as
error messages, warnings, etc. Stderr is unbuffered by default, which means that data written
to stderr is transferred to its destination one byte at a time.

The buffering for these pipes, as well as for any open file, can be modified — see the Stream
Status and Control Routines section later in this tutorial.

Of course, your program would be severely limited in its I/O capabilities if it had only these three
pipes to work with. Therefore, ordinary text files can be opened for reading, or created/opened
for writing, appending, or both reading and writing. Directories can also be opened, but only for
reading. These features are discussed later in this article. For now, the use of stdin and stdout
is described (stderr is also left for later discussion).
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input/Qutput Using Stdin and Stdout

This section describes those routines which are capable of I/O using stdin and stdout only. The
routines discussed are getchar and putchar (single character 1/O), gets and puts (string I/O), and
scanf and printf (formatted 1/0O of all types).

Single-character Input/Output

This section describes the two basic input and output routines, getchar and putchar. Getchar is
a macro defined in stdio.h which reads one character from stdin. Similarly, putchar is also a
macro defined in stdio.h. Putchar writes one character on stdout.

As an example, consider the following program, which simply reads stdin and echos whatever
it finds to stdout. The program terminates when it receives an at-sign (@) from stdin.

#include <stdio.h>
main()
{

int c;

while((c = getchar()) != ’@’)
putchar(c);
putchar(’\n’);
}

Why is ¢ declared an int instead of a char? For most applications, char works fine. In certain
cases, however, sign extension, bit shifting, and similar operations cause strange results with
chars. Therefore, int is used here, and in all following examples, to be safe.

The final putchar statement in the program is used to output a new-line so that your shell prompt
appears at the beginning of a new line, instead of at the end of the last line of output. Type it
in and give it a try! Remember that your input is not available to the program until you press

(RETURN ).
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Getchar and putchar are most useful in filters — programs that accept data and modify it in some
way before passing it on. Suppose you want to write a program that puts parentheses around
each vowel encountered in the input. It’s easy to do with these routines:

#include <stdio.h>
main()
{

int c;

while((c = getchar()) != ’\n’) {
if (vowel(c)) {

putchar(’ (*);
putchar(c) ;
putchar(’)’);
}else
putchar(c) ;
}
vowel(c)
char c;
{
if(c==’a’ || c=="A" || c==’e’ || c=="E’ || c==i’ [| ¢c=='T"
Il c==’0’ || e==’0" || c==’u’ || c=='U")
return(l);
else
return(0) ;
}

The vowel test is placed in the function vowel, since it tends to clutter up the main program.
This program terminates when it encounters a new-line.

String Input/Output

The gets function reads a string from stdin and stores it in a character array. The string is
terminated by a new-line in the input, which gets replaces with a NULL character in the array.
Its companion function, puts, copies a string from a character array to stdout. The string is
terminated by a NULL character in the array, which puts replaces with a new-line in the output.

The simple “echo” program from the last section can be rewritten using gets and puts.

#include <stdio.h>
main()

{
char 1ine[80], *gets();

while((gets(line)) != NULL)
puts(line);
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This program, as written, runs forever. To terminate it, press [BREAK] (or its equivalent). Later,
when string comparison and string length routines are introduced, an intelligent termination
condition can be written for this program.

Formatted Input/Output

The scanf and printf routines are powerful tools enabling you to read and write data in formatted
form, respectively.

Scanf
Scanf is the formatted-input library routine. Its syntax is:

scanf (format, [item][, item ...]]) ;

where format is a character pointer to a character string (or the character string itself enclosed
in double quotes), and item is the address of a variable.

The purpose of the format is to specify how the data to be read is presented on stdin, and what
types of data are found there. The format consists of two things: conversion specifications, and
literal characters.

Conversion Specifications

A conversion specification is a character sequence which tells scanf how to interpret the data
received at that point in the input. For example, if a conversion specification says “treat the
next piece of data as a decimal integer”, then that data is interpreted and stored as a decimal
integer.

In the format, a conversion specification is introduced by a percent sign (%), optionally followed
by an asterisk (*) (called the assignment suppression character), optionally followed by an integer
value (called the field width). The conversion specification is terminated by a character specifying
the type of data to expect. These terminating characters are called conversion characters.

When a conversion specification is encountered in a format, it is matched up with the corre-
sponding item in the item list. The data formatted by that specification is then stored in the
location pointed to by that item. For example, if there are four conversion specifications in a
format, the first specification is matched up with the first item, the second specification with the
second item, and so on.
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The number of conversion specifications in the format is directly related to the number of items
specified in the item list. With one exception, there must be at least as many items as there
are conversion specifications in the format. If there are too few items in the item list, an error
occurs; if there are too many, the excess items are simply ignored. The one exception occurs
when the assignment suppression character (*) is used. If an asterisk occurs immediately after
the percent sign (before the field width, if any), then the data formatted by that conversion
specification is discarded. No corresponding item is expected in the item list. This is useful for
skipping over unwanted data in the input.

Conversion Characters
There are eight conversion characters available. Three of them are used to format integer data,

three are used to format character data, and two are used for floating-point data.

The integer conversion characters are:

d a decimal integer is expected;
o an octal integer is expected;
X a hexadecimal integer is expected;

The character conversion characters are:

c a single character is expected;
S a character string is expected;
[ a character string is expected,

The floating-point conversion characters are:

e f a floating-point number is expected;
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integer Conversion Characters

The d, o, and x conversion characters read characters from stdin until an inappropriate character
is encountered, or until the number of characters specified by the field width, if given, is exhausted
(whichever comes first).

For d, an inappropriate character is any character except +, —, and 0 thru 9. For o, an
inappropriate character is any character except +, —, and 0 thru 9. That’s right — 8 and 9
are allowed in octal numbers! If you enter, say, 1294 to be interpreted by the o conversion
character, it still interprets the entire number as octal, and converts the digits to the octal digit
range. Thus, 1294 actually gets stored as 1314 (octal). For x, an inappropriate character is
any character except +, —, 0 thru 9, and the characters a — f and A thru F. Note that negative
octal and hexadecimal values are stored in their 2’s complement form with sign extension. Thus,
they may look unfamiliar if you print them out later (using printf — see below).

These integer conversion characters can be capitalized or preceded by a lower-case L () to
indicate that a long int should be expected rather than an int. They can also be preceded by h
to indicate a short int. The corresponding items in the item list for these conversion characters
must be pointers to integer variables of the appropriate length.

Character Conversion Characters

The ¢ conversion character reads the next character from stdin, no matter what that character
is. The corresponding item in the item list must be a pointer to a character variable. If a field
width is specified, then the number of characters indicated by the field width are read. In this
case, the corresponding item must refer to a character array large enough to hold the characters
read.

Note that strings read using the ¢ conversion character are not automatically terminated with
a NULL character in the array. Since all C library routines which utilize strings assume the
existence of a NULL terminator, be sure you add the NULL character yourself. Otherwise,
library routines are not able to tell where the string ends, and you’ll get puzzling results.

The s conversion character reads a character string from stdin which is delimited by one or
more space characters (blanks, tabs, or new-lines). If no field width is given, the input string
consists of all characters from the first non-space character up to (but not including) the first
space character. Any initial space characters are skipped over. If a field width is given, then
characters are read, beginning with the first non-space character, up to the first space character,
or until the number of characters specified by the field width is reached (whichever comes first).
The corresponding item in the item list must refer to a character array large enough to hold the
characters read, plus a terminating NULL character which is added automatically.
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An important point to remember about the s conversion character is that it cannot be made
to read a space character as part of a string. Space characters are always skipped over at
the beginning of a string, and they terminate reading whenever they occur in the string. For
example, suppose you want to read the first character from the following input line:

” Hello, there!”

(10 spaces followed by “Hello, there!”, the double quotes being added for clarity). If you use %c,
you get a space character. However, if you use %1s, you get “H” (the first non-space character
in the input).

The [ conversion character also reads a character string from stdin. However, this character
should be used when a string is not to be delimited by space characters. The left bracket is
followed by a list of characters, and is terminated by a right bracket. If the first character
after the left bracket is a circumflex (%), then characters are read from stdin until a character
is read which matches one of the characters between the brackets. If the first character is
not a circumflex, then characters are read from stdin until a character not occurring between
the brackets is found. The corresponding item in the item list must refer to a character array
large enough to hold the characters read, plus a terminating NULL character which is added
automatically.

The three string conversion characters provide you with a complete set of string-reading capabili-
ties. The ¢ conversion character can be used to read any single character, or to read a character
string when the exact number of characters in the string is known beforehand. The s conversion
character enables you to read any character string which is delimited by space characters, and is
of unknown length. Finally, the [ conversion character enables you to read character strings that
are delimited by characters other than space characters, and which are of unknown length.

Floating-Point Conversion Characters

The e and f conversion characters read characters from stdin until an inappropriate character is
encountered, or until the number of characters specified by the field width, if given, is exhausted
(whichever comes first).

Both e and f expect data in the following form: an optionally signed string of digits (possibly
containing a decimal point), followed by an optional exponent field consisting of an E or e followed
by an optionally signed integer. Thus, an inappropriate character is any character except +, —,
., 0thru 9, E, or e.

These floating-point conversion characters may be capitalized, or preceded by a lower-case L
(), to indicate that a double value is expected rather than a float. The corresponding items in
the item list for these conversion characters must be pointers to floating-point variables of the
appropriate length.
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Literal Characters

Any characters included in the format which are not part of a conversion specification are literal
characters. A literal character is expected to occur in the input at exactly that point. Note that
since the percent sign is used to introduce a conversion specification, you must type two percent
signs (%%) to get a literal percent sign.

Examples. Suppose that you have to read the following line of data:

NAME: Joe Kool; AGE: 27; PROF: Elec Engr; SAL: 39550

To get the vital data, you must read two strings (containing spaces), and two integers. You also
have data that should be ignored, such as the semicolons and the identifying strings (“NAME:”).
How do you go about reading this?

First, note that the identifying strings are always delimited by space characters. This suggests
use of the s conversion character to read them. Second, you can never know the exact sizes of
the NAME and PROF fields, but note that they are both terminated by a semicolon. Thus, you
can use [ to read them. Finally, the d conversion character can be used to read both integers.
(Note: on 16-bit processors, you probably need to use a long int to read the salaries. Thus, D
or ld should be used instead of d.)

The following code fragment successfully reads this data:

char name([40], prof[40];
int age, salary;

scanf ("}xs¥x[ 140" ;1%*ch*shd%*ch*sh*[ 1%[";1%*ck*s%d" ,name, &age,\
prof ,&salary) ;
For easier understanding, break the format into pieces:
%*s This reads the string “NAME.:”. Since an asterisk is given, the string is simply read
and discarded.

%*[ ] This gets rid of all blanks occurring between “NAME:” and the employee’s name. Note
that this gets rid of one or more blanks, giving the format some flexibility.

%[;]  This reads all characters from the current character up to a semicolon, and assigns the
characters to the array name.

%xc This gets rid of the semicolon left over after reading the name.

%B*s This reads the next identifying string, “AGE:”, and discards it.
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%d This reads the integer age given, and assigns it to age. The semicolon after the age
terminates %d, because that character is not appropriate for an integer value. Note
that the address of age is given in the item list (&age) instead of the variable name
itself. If this is not done, a memory fault occurs at run-time.

%*c This gets rid of the semicolon following the age.
%xs This reads the next identifying string, “PROF:”, and discards it.
%*[ ] This removes all blanks between “PROF:” and the next string.

%[";]  This reads all characters up to the next semicolon, and assigns them to the character
array prof.

%*c This gets rid of the semicolon following the profession string.
%*s This reads the final identifying string, “SAL:”, and discards it.
%d This reads the final integer and assigns it to the integer variable salary. Again, note

that the address of salary is given, not the variable name itself.

Although somewhat confusing to read, this format is quite flexible, since it allows for multiple
spaces between items and varying identifying strings (i.e. “PROFESSION:” could be specified
instead of “PROF:”). The following scanf call reads the same data, but is much less flexible:

scanf ("NAME: %[~;]; AGE:%d; PROF: %[~;]; SAL: %d4",name,&age,prof,&salary);
Here, literal characters are used to exactly match the characters in the input line. This works

fine if you can be sure that the data always appears in this form. If one typing variation is made,
however, such as typing “SALARY:” instead of “SAL:”, the scanf fails.

Scanf waits for more data as long as there are unsatisfied conversion specifications in the format.
Thus, a scanf call like

scanf ("4E%UE%E", &floatl, &float2, &float3);
where float1, float2, and float3 are all variables of type float, allows you to enter data in several

ways. For example,

14.77 29.8 13.0
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is read correctly by scanf, as is

14.77 [RETURN
29.8 | RETURN
13.0 | RETURN

Note: using decimal points in floating-point data is recommended whenever floating-point vari-
ables are being read. However, scanf converts integer data to floating-point if the conversion
specification so demands. Thus, “13.0” in the previous example could have been entered as
“13” with no side effects.

As a final example, consider the input string

abcdef137 d14.77ghijklmnop

Suppose that the following code fragment is used to read this string:

char arri[10], arr2[10], arr3[10], arr4[10];
float floati;

scanf ("%4c%[~3]1%6c%t%[ghijkl]l",arrl,arr2,arr3,&floatl,arrd) ;

What values are stored in the variables listed? (Give this some thought before reading on.)
As before, break up the format into separate conversion specifications, and see what data is
demanded by each.

%4c reads four characters, and assigns them to arrl. Thus, the string “abcd”
is assigned to arrl. Note that an extra character, NULL, is appended to
the end of the string.

%["3] reads all characters from the current character up to the character “3”.
This assigns “efl”, along with an added NULL character, to the array
arr2.

%6¢ reads the next six characters and stores them in the array arr3. Thus, “37

d14” is assigned to arr3, terminated by a NULL character.

%f reads a floating-point value which, due to the lack of a field width, is
terminated by the first “inappropriate” character. Thus, the value “.77” is
assigned to floatl.

%[ ghijkl] reads all characters up to the first character not occurring between the
brackets. This stores the string “ghijkl”, along with an appended NULL
character, in the array arr4.
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Note that there are some characters left in stdin that were not read. What happens to these
characters? Do they just go away? No! Any characters left unread in the input remain there!
This can cause unexpected errors. Suppose that, later in the above program fragment, you want
to read a string from stdin using %s. No matter what string you type in as input, it will never be
read, because the %s conversion specification is satisfied by reading “mnop” — the characters
left over from the previous read operation! To solve this, always be sure you have read the
entire current line of input before attempting to read the next. To fix this in the previous scanf
example, just add a %*s conversion specification at the end of the format. This reads and
discards the left-over characters.

Printf

Printf is the other half of the formatted I/O team. It enables you to output data in formatted
form. Its syntax is identical to that of scanf:

printf (format, [item[, item ...I\[]);

where the format is a pointer to a character string (or the character string itself. enclosed in
double quotes) which specifies the format and content of the data to be printed. Each item is a
variable or expression specifying the data to print.

Printf’'s format is similar in many respects to that of scanf. It is made up of conversion specifi-
cations and literal characters. As in scanf, literal characters are all characters that are not part
of a conversion specification. Literal characters are printed on stdout exactly as they appear in
the format.

Literal Characters

Included in the list of literal characters are escape sequences, which are sequences beginning
with a backslash (\e) which stand for other characters. The following list shows the escape
sequences defined for printf (and scanf, though less frequently used):

\b backspace;

\n new-line (carriage-return/line-feed sequence); output begins at the beginning of a
new line;

\r carriage-return without a line-feed; output begins at the beginning of the current
line (data already printed on that line is over-printed);

\t tab;

\\ literal backslash;

\nnn the character represented by the octal number nnn in the ASCII character set.

Nnn must begin with a zero. For example, \007 is an ASCII bell, which beeps
the bell on your terminal.
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Conversion Specifications

A conversion specification for printf is very similar to that of scanf, but is a bit more complicated.
The following list shows the different components of a conversion specification in their correct
sequence:

1. A percent sign (%), which signals the beginning of a conversion specification; to output a
literal percent sign, you must type two percent signs (%%);

Zero or more flags, which affect the way a value is printed (see below);
an optional decimal digit string which specifies a minimum field width;
an optional precision consisting of a dot (.) followed by a decimal digit string;

an optional 1 (lower-case L) or h, indicating a long or short integer argument;

o 0o W

a conversion character, which indicates the type of data to be converted and printed.

As in scanf, a one-to-one correlation must exist between each specification encountered and each
item in the item list.

The available flags are:

- causes the data to be left-justified within its output field. Normally, the data is
right-justified.

+ causes all signed data to begin with a sign (+ or —). Normally, only negative
values have signs.

blank causes a blank to be inserted before a positive signed value. This is used to line
up positive and negative values in columnar data. Otherwise, the first digit of a
positive value is lined up with the negative sign of a negative value. If the “blank”
and “+” flags both appear, the “blank” flag is ignored.

# causes the data to be printed in an “alternate form”. Refer to the descriptions of
the conversion characters below for details concerning the effects of this flag.

A field width, if specified, determines the minimum number of spaces allocated to the output
field for the particular piece of data being printed. If the data happens to be smaller than the
field width, the data is blank-padded on the left (or on the right, if the — flag is specified) to
fill the field. If the data is larger than the field width, the field width is simply expanded to
accommodate the data. An insufficient field width never causes data to be truncated. If no field
width is specified, the resulting field is made just large enough to hold the data.
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The precision is a value which means different things depending on the conversion character
specified. Refer to the descriptions of the conversion characters below for more details.

Note: a field width or precision may be replaced by an asterisk (*). If so, the next item in the
item list is fetched, and its value is used as the field width or precision. The item fetched must
be an integer.

Conversion Characters
conversion character specifies the type of data to expect in the item list, and causes the data to
be formatted and printed appropriately. The integer conversion characters are:

d an integer item is converted to signed decimal. The precision, if given, specifies
the minimum number of digits to appear. If the value has fewer digits than that
specified by the precision, the value is expanded with leading zeros. The default
precision is one (1). A null string results if a zero value is printed with a zero
precision. The # flag has no effect.

u an integer item is converted to unsigned decimal. The effects of the precision
and the # flag are the same as for d.

o an integer item is converted to unsigned octal. The # flag, if specified, causes
the precision to be expanded, and the octal value is printed with a leading zero
(a C convention). The precision behaves the same as in d above, except that
printing a zero value with a zero precision results in only the leading zero being
printed, if the # flag is specified.

X an integer item is converted to hexadecimal. The letters abcdef are used in
printing hexadecimal values. The # flag, if specified, causes the precision to
be expanded, and the hexadecimal value is printed with a leading “0x” (a C
convention). The precision behaves as in d above, except that printing a zero
value with a zero precision results in only the leading “Ox” being printed, if the
# flag is specified.

X same as X above, except that the letters ABCDEF are used to print the hexadec-
imal value, and the # flag causes the value to be printed with a leading “0X”.

16 Using C Library Routines



The character conversion characters are as follows:

c the character specified by the char item is printed. The precision is meaningless,
and the # flag has no effect.

s the string pointed to by the character pointer item is printed. If a precision is
specified, characters from the string are printed until the number of characters
indicated by the precision has been reached, or until a NULL character is en-
countered, whichever comes first. If the precision is omitted, all characters up to
the first NULL character are printed. The # flag has no effect.

The floating-point conversion characters are:

f the float or double item is converted to decimal notation in style f; that is, in the
form

[lddd.ddd

where the number of digits after the decimal point is equal to the precision. If
no precision is specified, six (6) digits are printed after the decimal point. If the
precision is explicitly zero, the decimal point is eliminated entirely. If the # flag
is specified, a decimal point always appears, even if no digits follow the decimal
point.

e the float or double item is converted to scientific notation in style e; that is, in
the form

[—]d.dddAe=ddd

where there is always one digit before the decimal point. The number of digits
after the decimal point is equal to the precision. If no precision is given, six (6)
digits are printed after the decimal point. If the precision is explicitly zero, the
decimal point is eliminated entirely. The exponent always contains exactly three
digits. If the # flag is specified, the result always contains a decimal point, even
if no digits follow the decimal point.

E same as e above, except that E is used to introduce the exponent instead of e
(style E).
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g the float or double item is converted to either style f or style e, depending on the
size of the exponent. If the exponent resulting from the conversion is less than
—4 or greater than the precision, style e is used. Otherwise, style f is used. The
precision specifies the number of significant digits. Trailing zeros are removed
from the result, and a decimal point appears only if it is followed by a digit. If
the # flag is specified, the result always has a decimal point, even if no digits
follow the decimal point, and trailing zeros are not removed.

G same as the g conversion above, except that style E is used instead of style e.

The items in the item list may be variable names or expressions. Note that, with the exception
of the s conversion, pointers are not required in the item list (contrast this with scanf’s item list).
If the s conversion is used, a pointer to a character string must be specified.

Examples

Here are some examples of printf conversion specifications and a brief description of what they
do:

%d output a signed decimal integer. The field width is just large enough to
hold the value.

%—*d output a signed decimal integer. The left-justify flag (—) and the blank flag
are specified. The asterisk causes a field width value to be extracted from
the item list. Thus, the item specifying the desired field width must occur
before the item containing the value to be converted by the d conversion
character.

%+17.2f output a floating-point value. The + flag causes the value to have an initial
sign (+ or —). The value is right-justified in a 7-column field, and has
exactly two digits after the decimal point. This conversion specification is
ideal for a debit/credit column on a finance worksheet. (If the + sign is
not necessary, use the blank flag instead.)
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Consider the following program, which reads a number from stdin, and prints that number,
followed by its square and its cube:

#include <stdio.h>
main()

{

double x;

printf ("Enter your number: ");

scanf ("%F", &x);

printf ("Your number is %g\n", x);

printf ("Its square is %g\nIts cube is %g\n", x*x, x*x*x);

}

The g conversion character is used so that the decision about whether or not to use an exponent
is automated. Note that the item list contains expressions to calculate x squared and x cubed.
Also note that the address of the variable is required in order to read a value for it, but printing
requires the variable name itself.

How about a program that accepts a decimal integer, and then prints the integer itself, its square,
and its cube in decimal, octal, and hexadecimal? Easy enough:

#include <stdio.h>
main()

{
long n, n2, n3;
/* get value */

printf ("Enter your number: ");
scanf ("%D", &n);

/* print headings */
printf ("\n\n Decimal Octal Hexadecimal\n") ;
/* do the computation */

n2 =n % n;
n3 =n *¥n * n;

printf("n itself: %71d  %9lo %61x\n", n, n, n);
printf("n squared: %71d %9lo %61x\n", n2, n2, n2);
printf("n cubed: %71d  %9lo %61lx\n", n3, n3, n3);
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This program prints the headings “Decimal”, “Octal”, and “Hexadecimal”, and then prints out
the data in tabular form. Programs which print tabular data always require some tinkering with
the formats to make things come out right. Type this in and try it yourself.

Strings are especially easy to manipulate using printf. The following simple program illustrates
this:

#include <stdio.h>
main()
{
char first[15], last[25];

printf ("Enter your first and last names: ");
scanf ("%s%s", first, last);
printf("\nWell, hello %s, it’s good to meet you!\n", first);
printf("%s, huh? Are you any relation to that famous\n", last);
printf ("computer programmer, Mortimer Zigfelder %s?\n", last);
printf("No, sorry, that was my mistake. I was thinking of\n");
printf("0’%s, not %s.\n", last, last);

}

This program shows how easily strings can be inserted in text. Try variations of your own.
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input/Output from/to Strings

Two library routines, sscanf and sprintf, enable you to read data from a string, and write data
into a string. These routines behave identically to scanf and printf, respectively, except that
sscanf reads data from a character string instead of from stdin, and sprintf writes data into a
string instead of on stdout.

Reading Data from a String

Sscanf enables you to read data directly from a string. The syntax for an sscanf call is
sscanf (string, format, [item[, item ...]11);
where string is the name of a character array containing the data to be read, and format and

item are familiar terms from the previous section. Thus, the only difference between sscanf and
scanf, syntactically speaking, is sscanf’s inclusion of a new parameter, string.

The following program simply reads a string of your choosing from stdin, stores it in the character
array string, and prints out the first word of that string:

#include <stdio.h>
main()

{
char string[80], word[25], *gets();
/* get the string */

printf ("Enter your string: ");
gets(string) ;

/* get the first word */
sscanf (string, "%s", word);

printf("The first word is %s.\n", word);

}
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Of course, sscanf is rarely used in this way. Sscanf is more often used as a means of converting
ASCII characters into other forms, such as integer or floating-point values. For example, the
following program uses sscanf to implement a five-function calculator:

#include <stdio.h>

main()

{
char line[80], *gets(), opl[4];
long ni, n2;
double argl, arg2;

/* print prompt (>) and get input */

printf ("\n> ");
gets(line);

/* begin loop */

while(line[0] != ’q’) {
sscanf (line, "%xs%s", op);
if(op[0] == '+’) {
sscanf (line, "YF%xs%F", &argl, &arg2);
printf("Answer: Yg\n\n", argl+arg2);
} else if(opl[0] == ’|-’) {
sscanf (line, "%F%*s)F", &argl, &arg2);
printf("Answer: Y%g\n\n", argl|-arg2);
} else if(op[0] == ’*’) {
sscanf (line, "}F%*s)F", &argl, &arg2);
printf ("Answer: Y%g\n\n", argi*arg2);
} else if(opl[0] == */?) {
sscanf (line, "YF%*s%F", &argl, &arg2);
printf ("Answer: %g\n\n", argi/arg2);
} else if(opl[0] == ’%’) {
sscanf (line, "%D%*s%D", &ni, &n2);
while(nl >= n2)

nl |-= n2;
printf("Answer: %ld\n\n", ni);
} else
printf("Can’t recognize operator: %s\n\n", op);
printf ("> ");
gets(line) ;
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The calculator program accepts input lines having the form
value <operator> value

where value is any number, and <operator> is the symbol +, —, *, /, or %, standing for
addition, subtraction, multiplication, division, or remainder, respectively. All functions except
remainder are handled internally in floating-point, but values for these functions can be typed
with or without a decimal point. Values for the remainder function must not have a decimal
point. There must be at least one space between each value and the operator.

Note the use of sscanf in this program. The entire input line is read using gets. Then, the
different parts of the input line are read from line using sscanf. Notice that the input line is
stored as an ASCII string in line, but portions of it are converted to floating-point or integer
values, depending on the operator.

Examples of valid entries are

15.778 * 3.89
27 % 8

17 + 39.72
etc.

The program terminates when it reads a line beginning with “q”, such as “quit”.

There are two things that differ between reading data from stdin, and reading data from a string.
First, you remember that reading data from stdin causes that data to “go away” —— it is no
longer contained in stdin. This is not true for a string. Since the data is stored in a string, it is
always there, even if that data has been read several times. Second, since the data read from
stdin disappears as you read it, the next read operation from stdin always begins where the
previous read operation terminated. This is not true when you read from a string using sscanf.
Each successive read operation begins at the beginning of the string. Thus, if you want to read
five words from a string stored in a character array, you must read them in a single sscanf call.
If you try to read one word in five separate sscanf calls, each call starts reading at the beginning
of the string, and you end up reading the same word five times!
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Writing Data Into a String

The sprintf routine enables you to write data into a character string. Its syntax is

sprintf (string, format, [item[, item ...]]) ;

which is identical to that of sscanf. String is the name of the character string into which the data
is written. Format and item are familiar terms from the previous discussion of printf. In fact,
the only difference between sprintf and printf is that sprintf writes data into a character array,
while printf writes data on stdout.

The following program acts as a “formatter” for personal data. Suppose that this program
is used to provide a “friendly” user interface to gather personal data. The data received is
then reformatted into a string which is passed along to another program, such as a data base
maintainer. The string contains the data entered by the user, but in a form using strict field
widths for the various pieces of data. The data base program requires these field widths in
order for the data to be processed correctly, but there is no reason to burden the user with this
requirement. This “formatter” program lets the user enter data in a convenient form (without
the fixed field restrictions imposed by the data base).

#include <stdio.h>
main ()
{
char name([31], prof[31], hdatel[7], curve[3], string[81];
char *format = "%308%2d%308%61d%6s%2d%2s" ;
int age, rank;
long salary;

/* start asking questions */

printf ("\nName (30 chars max): ");

gets(name) ;

while(name[0] != *]°) {
printf("Age: ");
scanf ("}d%*c", &age);
printf("Job title (30 chars max): ");
gets(prof) ;
printf("Salary (6 digits max, no comma): ");
scanf ("%D%*c", &salary);
printf("Hire date (numerical MMDDYY): ");
gets(hdate) ;
printf("Percentile ranking (omit \"%%\"): ");
scanf ("}d%*c", &rank);
printf ("Pay curve: ");
gets(curve) ;
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/* format string */

sprintf (string, format,name,age,prof,salary,hdate,rank, curve) ;
printf ("\n}s\n", string);

/* start next round */

printf ("\nName (30 chars max): ");
gets(name) ;

}

This program asks you questions to obtain typical company information such as name, age, job
title, salary, hire date, ranking, and pay curve. This data is then packed into a 78-character
string using sprintf. The string is printed on your screen in this program, but in an actual working
environment, this string would probably be passed directly to the data base program. Note that
sprintf’s format is specified as an explicit character pointer. When lengthy, unchanging formats
are used, this is often more convenient than typing the entire format string, especially if the item
list is long.

As an exercise, consider the scanf calls in the previous program. Notice that a %*c conversion
specification is included in the formats of the scanfs which are reading integer values (age, salary,
rank). Why is this necessary? If you aren’t sure, take the %*c’s out of those formats, re-compile
the program, run it, and note its behavior. (Hint: remember that a new-line character terminates
the read operation for %d and %D conversions, and leaves the new-line unread in stdin.)
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Input/Output Using Ordinary Files

So far, you have been using library routines which can perform I/O only by using stdin and
stdout. This section introduces routines that enable you to open existing ordinary files for
reading, writing, or both, and to create ordinary files. Routines that enable you to perform I/0O
to and from ordinary files are also described.

Opening Ordinary Files

Before a file can be read from or written to, it must be opened. A file is opened using the fopen
library routine. The syntax of an fopen call is

fopen(<filename>, <type>);

where <filename> is a character pointer to a character string specifying the name of the file to
be opened, and <type> is a character pointer to a one- or two-character string specifying the
I/0 operation for which the file is opened. The available <type>s are:

r opens the file for reading at the beginning of the file. The file must already exist,
Or an error occurs.

w opens the file for writing at the beginning of the file. If the file exists, its previous
contents are destroyed. If the file does not exist, it is created.

a opens the file for writing at the end of the file (appends data to the end of the
file). If the file does not exist, it is created for writing.

r+ opens the file for both reading and writing, starting at the beginning of the file.
The file must already exist, or an error occurs.

w+ opens the file for both reading and writing, starting at the beginning of the file.
If the file already exists, its previous contents are destroyed. If the file does not
exist, it is created.

a+ opens the file for both reading and writing, starting at the end of the file. If the
file does not exist, it is created.

When a file is opened for an append operation (<type> is “a” or “a+”), it is impossible to

overwrite the existing file contents. Fseek can be used to reposition the file pointer to any

position in the file, but when output is written to the file, the pointer is disregarded. When the

append operation (which begins at the end of the existing file) is completed, the file pointer is

repositioned to the end of the appended output.
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In exchange for a filename and a type, fopen opens a “pathway” between your program and the
file. This “pathway” is called a stream. If you open the file for reading, then the stream provides
one-way data transfer from the file to your program. If you open the file for writing, then data
transfer flows from your program to the file. Finally, if the file is opened for both reading and
writing, the resulting stream is bi-directional.

Fopen also associates a buffer with the stream. This gives the stream the ability to store a
small amount of data. By default, the capacity of the buffer is equal to BUFSIZ bytes, where
BUFSIZ is a constant defined in stdio.h. For the Series 200 and Series 500 computers, BUFSIZ
is defined to be 1024.

The buffer size can be increased, decreased, or set to zero by using setbuf or setvbuf. If the
buffer size is allowed to remain at default size, a maximum of BUFSIZ bytes of data can be
present on the stream at any given time. If the buffer size is reduced to zero, then the stream
can transfer only one byte at a time.

Since fopen takes care of all the intricacies of building a stream and allocating a buffer, all you
need to know is how to find your end of the stream. Fopen provides you with this information
by returning to you a value called a file pointer (often called a stream pointer). A file pointer
“points” to the newly-created stream, and keeps track of where the next I/O operation takes
place (in the form of a byte offset relative to the beginning of the associated buffer).

Is all this talk about streams and data transfer from a source to a destination beginning to
sound familiar? Do you remember the “pipeline and water” analogy given at the beginning of
this section? These two discussions should sound almost identical, because stdin, stdout, and
stderr are actually file pointers to pre-opened streams! Stdin is a file pointer to a stream which
transfers data from your tty (terminal) file to your program. Stdout and stderr are file pointers
to two different streams which both transfer data from your program to your tty file. Be sure
to note that stdout and stderr are different streams flowing in the same direction between the
same two points!

Once you have a file pointer in your possession, you need never refer to the open file by its

name again. A file pointer provides access to all the information needed by other standard 1/0O
routines to read from or write to the file.
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The following program fragment shows how the fopen routine is used:

#include <stdio.h>
main()

{
FILE fp;

fp = fopen("/users/tom/bin/datafile", "r");
if (fp == NULL) {
printf("Can’t open datafile.\n");
exit(1);
}

This fopen call, if successful, opens /users/tom/bin/datafile for reading. The file pointer returned
by fopen is stored in fp. Note that fp’s value is checked to see if it is NULL. This is because
fopen returns a NULL pointer if the indicated file cannot be opened. It is good practice to check
the value of a file pointer —— this is the only error indication facility that fopen provides.

The previous example also introduces a new type declaration, FILE. The FILE declaration is
defined in stdio.h. In the example above, it defines fp as a variable containing a file pointer.
Note that explicit declarations of functions returning file pointers is unneccessary —— stdio.h
declares all such functions for you.

Before moving on, keep in mind that several things can stop you from successfully opening
a file. First, HP-UX limits the number of files simultaneously open in a process (refer to the
System Administrator Manual supplied with your system to find your system’s limit). Remember
that stdin, stdout, and stderr are automatically opened for you, so the maximum you can
explicitly open is three fewer than the system limit. Second, you must have permission to open
the file for the particular type you have specified (this permission is granted or denied by the
file’s mode). Third, trying to open a non-existent file using type r or r+ always fails. Fourth,
if the filename is specified incorrectly, contains a non-existent directory name, or contains an
intermediate component which is not a directory, the open fails. This is not a complete list, but
it contains some of the common reasons why an attempt to open a file might fail.
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Single-Character Input/Output

Now that you know how to open files and obtain file pointers, you have a whole new set of I/O
routines at your disposal, enabling you to perform all kinds of [/O operations. In fact, there are
about three times as many available routines that utilize file pointers as there are routines that
are limited to stdin and stdout only!

In this section, only those routines that read or write one character at a time are discussed.
These routines are getc, putc, fgetc, and fputc. Getc and putc are macros defined in stdio.h
which read one character from the specified stream, and write one character on the specified
stream, respectively. They have the following syntax:

getc(stream) ;
putc(c, stream);

where stream is a file pointer obtained from fopen, and c is a variable of type char (or int)
indicating the character to write on the indicated stream. A simple version of the HP-UX cat
command can be written using these routines:

#include <stdio.h>
main(argc, argv)
int argc;

char *argv[];

int c;
FILE *fp;

if(arge '= 2) {
printf("Usage: cat file\n");

exit(1);

}

fp = fopen(argv[i], "r");

if (fp == NULL) {
printf("Can’t open %s.\n", argv[i]);
exit(1);

}

while((c = getc(fp)) != EOF)
putc(c, stdout);
putc(’\n’, stdout);

exit (0);
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This program accepts a single argument which is assumed to be the name of a file whose
contents are to be printed on the user’s terminal. The specified file is opened for reading, and
the resulting file pointer fp is used in getc to read a character from the file. Each character read
is written on stdout using putc (note that stdout, as well as stdin and stderr, are perfectly legal
file pointers). The reading and writing loop is terminated when the constant EOF is returned
from getc, indicating that the end of the file has been reached. This constant is defined in
stdio.h.

Note that getc and putc can be made to behave exactly like the getchar and putchar routines
discussed earlier by specifying the appropriate file pointer. In other words,

getc(stdin) ;

is identical to

getchar();

and

putc(c, stdout) ;

is identical to

putchar(c) ;

Thus, the putc call in the previous program could just as easily have been

putchar(c) ;

without altering the behavior of the program. However, if the destination of the data is some-
where other than the user’s terminal, the flexibility of putc is required. Take, for example, the
following program, which is a simple version of the HP-UX ¢p command:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv([];
{
int c;
FILE #from, *to;
if (arge !'= 3) {
printf("Usage: cp fromfile tofile\n");
exit(1);
}

from = fopen(argv[1], "r");
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if (from == NULL) {
printf("Can’t open %s.\n", argv[1]);
exit(1);

}

to = fopen(argv[2], "w");

if (to == NULL) {
printf("Can’t create %s.\n", argv[2]);

exit(1);

}

while((c = getc(from)) != EOF)
putc(c, to);

exit (0);

}

This program accepts two arguments. The first is the name of the file to be copied, and the
second is the name of the file to be created. The first file is opened for reading, and the second
file is created for writing. The data from the first file is then copied directly to the newly-created

file.

The fgetc and fputc routines are actual functions, not macros. Their syntax and usage is identical
to that of getc and putc, so no examples are given here illustrating their use. However, here are
some distinctions between the macro and function versions of these routines to help you decide

which to use:

e A function call takes time, since the function call still exists at runtime. A macro call,
however, takes no time at all, because the macro call is replaced with the actual code

making up the macro during compilation, before run-time.

Thus, generally speaking,

programs containing macros run faster than programs containing the equivalent function

calls.

e A function’s code is localized in one section of the program. Each function call causes a
jump to that section to execute the function. A macro call, however, is replaced with its
code everywhere that macro call appears. Thus, programs containing macro calls generally
require more space than programs containing the equivalent function calls.

e You may take the address of a function, and pass it as an argument. You cannot do this

with a macro.

Given these guidelines, decide which routines to use based on your own constraints.
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Character Push-Back

The ungetc routine enables you to push back a single character onto an input stream. This
character is then returned by the next getc call (or equivalent).

Ungetc’s syntax is as follows:

ungetc(c, stream);

where c is the character to be pushed back, and stream is the input stream where the push-back
is to occur. Note that ¢ must be a character that has been previously read from stream.

The following program simply reads one character from stdin, pushes it back onto stdin, re-reads
the character, and checks to make sure that this character and the character originally pushed
back are the same. A message is printed on stdout stating the outcome of the comparison.

#include <stdio.h>
main()
{

int cl, c2;

cl = getchar();
ungetc(cl, stdin);
c2 = getchar();

if (c1 == c2)
printf ("They’re the same!\n");
else

printf("Oops! They’re different!\n");

One character’s worth of push-back is guaranteed as long as something has been read from
the stream prior to the push-back attempt, and provided that the stream is buffered. More
characters could possibly be pushed back, but determining exactly how many characters of push-
back you can safely perform is quite possibly not worth the effort. However, for completeness,
the following statement is included as a method for determining the number of characters of
push-back available at any given time:

numpb = ftell(stream) % BUFSIZ + 1;
where ftell is a function discussed in a later section, stream is a file pointer, and BUFSIZ is a

constant defined in stdio.h containing the size of the buffer in bytes. After execution, numpb
contains the number of characters of push-back available at that time.
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String input/Output

The fgets and fputs routines enable you to read or write strings from or to specified streams.
Their syntax is as follows:

fgets(string, n, stream);
fputs(string, stream) ;

where string is a pointer to a character string, and stream is a file pointer to the input or output
stream.

Fgets reads a character string from the specified stream, and stores it in the character array
pointed to by string. Fgets reads n—1 characters, or up to a new-line character, whichever
comes first. If a new-line character is encountered, it is retained as part of the string (contrast
this with gets, which replaces the new-line with a NULL character). Fgets appends a NULL
character to the string.

Fputs writes the character string pointed to by string on the specified stream, stopping when a
NULL character is encountered. Fputs does not append a new-line character to the string when
it is written. This is because fputs is intended for use with fgets, which incorporates a new-line
character into the string if a new-line is encountered in the input.

The cp program written earlier can be re-written using fgets and fputs:

#include <stdio.h>
main(argc, argv)
int argc;

char *argv([];

char c, line[256], *fgets();
FILE *from, *to;

if (arge '= 3) {
printf("Usage: cp fromfile tofile\n");
exit(1);

}

from = fopen(argv[1i], "r");

if (from == NULL) {
printf("Can’t open %s.\n", argv[1]);
exit(1);

}

to = fopen(argv[2], "w");

if (to == NULL) {
printf("Can’t create %s.\n", argv[2]);
exit(1);

}
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while(fgets(line, 256, from) != NULL)
fputs(line, to);

exit (0);
}

This program functions exactly like the previous version of cp above. Note that fgets’s return
value is compared to NULL in the while loop, since fgets returns the NULL pointer when it
reaches the end of its input.

This program can easily be converted to a simple cat command. It only requires four changes.
Can you see what they are? First, change the argc comparison such that it reads

if(arge !'=2) ...

(You might also want to change the associated usage message!) Second, remove the to file
pointer, since you don’t need it anymore. Third, remove the block of code which uses fopen to
open the new file, and assigns a value to to. Fourth, change the fputs call such that it reads

fputs(line, stdout);

Here’s the new cat command:

#include <stdio.h>
main(argec, argv)
int argc;

char *argv[];

char c, line[256], *fgets();
FILE *from;

if(arge < 2) {
printf("Usage: cat file\n");
exit(1);

}

from = fopen(argv[1i], "r");

if(from == NULL) {
printf("Can’t open %s.\n", argv[il);
exit(1);

}

while(fgets(line, 256, from) != NULL)
fputs(line, stdout);

exit (0) ;
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Formatted Input/Output

Just as there are versions of scanf and printf which perform string I/O, so there are versions
which enable [/O using files. Fscanf enables you to read data of all types from a specified stream,
and fprintf provides the capability of writing data on a stream. Their syntax is as follows:

fscanf (stream, format, [item[, item ...]]);
fprintf (stream, format, [item[, item ...]]);

Stream is a file pointer to an open stream. Format and item should be familiar terms from
previous discussions.
The following program illustrates the use of the fscanf and fprintf routines:

#include <stdio.h>
main(argc, argv)

int argc;
char *argv[];
{

int count = O;
FILE *file;

if(arge != 2) {
fprintf (stderr, "Usage: wdcnt filename\n");
exit(1);

}

file = fopen(argv[1], "r");

if (file == NULL) {
fprintf (stderr, "Can’t open %s.\n", argv[i]);
exit(1);

}

while(fscanf(file, "%*s") != EOF)
count++;

printf ("Number of words found: %d\n", count);

exit (0);

, This program, named wdcnt (for “word count”), counts the number of “words” in the file specified
’K as its only argument. A word is defined as a string of non-space characters.
.

Using C Library Routines 35



Note how fprintf is used in this program. You learned in a prior discussion that stderr is typically
used to output error messages or warning statements. In this program, fprintf is used to direct
error messages to stderr. You don’t lose anything by doing this, since data written on stderr
appears on your terminal by default. However, you gain some important flexibility. Now that
error output is written on a different stream than normal output, the error output (or the normal
output) can be redirected to another destination. For example, invoking the previous program
as

$ wdent <filel> 2>errmsgs

causes all output arising from erroneous conditions to be collected in the file errmsgs. For the
wdcnt program, this is somewhat trivial, since the program terminates upon any error. However,
for programs which output any number of warnings without terminating, this is a very useful
capability. Not only does it keep normal, desired output from getting‘cluttered up with error
messages, but it enables you to save output for later examination at your leisure. Thus, it is
good programming practice to write error messages and warnings on stderr, and use stdout (or
whatever your destination file is) to output normal data.

Binary Input/Output

The routines described in this section deal with data in its binary form —-that is, the data is never
converted to ASCII for user viewing. These routines are used to transfer raw data between two
points, such as from a variable to a data file, or vice versa.

Two routines, getw and putw, are used to read or write an integer word (an int) to or from a
stream, respectively. Their syntax is as follows:

getw(stream) ;
putw(w, stream) ;

where stream is a file pointer to the input or output stream, and w is the integer word to be
output by putw.
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The following program “sorts” a data file which has presumably been created earlier, and contains
raw integer data. The program divides this data file into two new data files, one containing
integer data whose absolute value is less than or equal to 32767, the other containing data
whose absolute value is larger than 32767.

#include <stdio.h>
main(argc, argv)
int argc;
char *argvl[];
{
int word;
FILE *dfile, *datale, *datagt;

if (arge '= 2) {
fprintf (stderr, "usage: intsort filename\n");
exit (1) ;

}

dfile = fopen(argv[1i], "r");

if (dfile == NULL) {
fprintf("Can’t open %s.\n", argv[i]);
exit(1);

}

datale = fopen("dfle", "w");

if (datale == NULL) {
fprintf("Can’t create dfle file.\n");
exit(1);

}

datagt = fopen("dfgt", "w");

if (datagt == NULL) {
fprintf("Can’t create dfgt file.\n");
exit(1);

}

while((word = getw(dfile)) != EOF) {
if (word <= 32767 && word >= -32767)
putw(word, datale);
else
putw(word, datagt);
}

exit (0);
}

This program reads a word from the specified data file. If its absolute value is less than or equal
to 32767, the word is written on a file called dfle in the user’s current directory. Otherwise,
the word is written on a file called dfgt in the current directory.
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Note that this program works only on machines that use four-byte integers. Also, the comparison
between word and the constant EOF is faulty, since EOF is defined to be —1, a valid integer.
The section entitled Stream Status Inquiry Routines describes standard 1/O routines which fix
this problem.

Both of these routines transfer four bytes at a time. Again, there is no ASCII conversion
associated with these routines, so if you attempt to print the contents of a file containing integer
data output by putw, you will get garbage. Note that it makes little sense to input binary data
from stdin, as in

getw(stdin) ;

unless stdin is redirected from a file containing binary data. Using getw to read data from your
keyboard is futile. If you type in a valid-looking integer, like “1728”, getw reads the ASCII
values of those characters and stores them as an integer. This results in data being read which
is very different from what you probably intended.

Two other routines, called fread and fwrite, provide much more flexible binary data input and
output. Their syntax is as follows:

fread((char *)ptr, sizeof (*ptr), nitems, stream);
fwrite((char *)ptr, sizeof (*ptr), nitems, stream);

where ptr is a pointer to the beginning of a block (array) of data. This argument is cast as a
character pointer because these routines expect a pointer of this type. The second argument
specifies the number of bytes per unit of data (four bytes per int, one byte per char, x bytes per
struct, etc.). The C operator sizeof is usually used to obtain this value. The third argument,
nitems, is an integer specifying the number of units of data to read or write. For example, if ptr
points to the beginning of a structure, sizeof(ptr) tells how many bytes make up that structure,
and nitems tells how many structures to read. Actually, the second and third arguments above
may be reversed in the argument list with no ill effects, because internally these routines simply
multiply the two integers together to obtain the total number of bytes to read. Finally, stream is
a file pointer to the input or output stream.
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As an example, suppose you have a program which keeps track of certain employee data. Each
employee is to be described in a single structure. Here is a simple program to do that:

#include <stdio.h>
struct emp {

char name [40]; /* name */
char job[40]; /* job title */
long salary; /* salary */
char hire[6] /* hire date */
char curve[2] /% pay curve */
int rank; /* percentile ranking */
}
#define EMPS 400 /* no. of employees */
main()
{
int items;
struct emp staff [EMPS];
FILE *data;

data = fopen("/usr/lib/employees/empdata", "r");

if(data == NULL) { .
fprintf(stderr, "Can’t open employee data file.\n");
exit(1);

}

items = fread((char *)staff, sizeof(staff[0]), EMPS, data);
if(items != EMPS) {

fprintf(stderr, "Insufficient data found.\n");

exit (1) ;
}

fclose(data);
archive("/usr/lib/employees/empdata") ;

/* Employee information processing goes here. */

/* Processing is done. Write out new employee records. */

data = fopen("/usr/lib/employees/empdata", "w");
if(data == NULL) {
fprintf (stderr, "Can’t create new employee file.\n");
exit(1);
}
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items = fwrite((char *)staff, sizeof(staff[0]), EMPS, data);
if(items != EMPS) {

fprintf (stderr, "Write error!\n");

exit(1);
}

exit (0);
}
archive(filename)
char *filename;

{
}

This program reads the employee information contained in the binary file
/usr/lib/employees/empdata. The data in this file consists of concatenated streams of bytes
describing each employee of a certain 400-employee company. The bytes are written such that,
when read correctly, the bytes correspond exactly with the emp structure defined in the program.
The staff array is an array of structures containing one structure for each employee.

In the fread call, the sizeof(staff[0]) expression returns the number of bytes in the emp structure.
Since the same number of bytes are in each employee structure, any element of the staff array
could have been specified as the sizeof argument; staff[0] is used in this example. (By counting
the number of bytes in each structure member, you can get an approximation of the number of
bytes returned by the sizeof operator: 40 + 40 + 8 + 6 + 2 + 4 = 100 bytes. This may vary
due to padding performed by a programming language, or by machine architecture.) Specifying
EMPS as the nitems argument tells fread to read 400 such structures. Thus, 100 x 400 =
40000 bytes are read, filling in the information for the members of each structure contained in
the stdff array.

The archive function is not shown here, but simply saves the old employee information in empdata
in an employee information archive of some kind. After the information is archived, the empdata
file is overwritten with the new, updated employee information.

A new routine, called fclose, is introduced here. Fclose simply closes the stream associated with
the file pointer specified. This is necessary in order to re-open the file for writing. Once it is
open for writing, fwrite is used to overwrite its previous contents with the new data.

One final note about these two routines: they return the number of items of data which have
been read or written. Thus, you can compare this number with whatever you specified for nitems
to see if everything you wanted read or written actually was. This return value is used twice in
the above program to flag probable read and write errors.
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The fread and fwrite routines can be made to read any type of data. The following examples
show some fread calls which read several different types of data:
To read a long integer:
long nint;
fread ((char *)&nint, sizeof(nint), 1, stream);
To read an array of 100 long integers:

long nint[100];

fread((char *)nint, sizeof(nint[0]), 100, stream);
To read a double precision floating-point value:

double fpoint;

fread((char *)&fpoint, sizeof (fpoint), 1, stream);
To read an array of 50 floating-point values:

float fpoint[50];

fread((char *)fpoint, sizeof (fpoint[0]), 50, stream);

To get the equivalent furite calls, just substitute “fwrite” in place of “fread” in the previous
examples. You can see how much more flexible fread and fwrite are than getw and putw.
Whereas getw and putw are limited to reading or writing a single four-byte integer per call, fread
and fwrite can be made to read or write any number of variables of any type.
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Stream Status and Control Routines

This section discusses standard I/O routines which enable you to:
e Determine whether or not an error has occurred on an open stream (feof, ferror, clearerr);
e Re-position the location of the next I/O operation on an open stream (rewind, ftell, fseek);

e Control various attributes of an open stream, such as buffering, flushing, etc. (fclose,
setbuf, fflush, freopen);

e Convert a file pointer to a file descriptor, and vice versa (fileno, fdopen).

Stream Status Inquiry Routines

This section describes three routines, feof, ferror, and clearerr, which enable you to determine
the status of an open stream at any given time.

Feof is a macro defined in stdio.h which returns a non-zero value if the end-of-file has been
reached on an input stream. Its syntax is as follows:

feof (stream) ;
Do you remember the example program which illustrated the use of getw and putw? It was
noted that comparing getw’s return value to the constant EOF was faulty, because getw returns

an integer, and EOF is defined to be a valid integer (—1). How then do you determine if
end-of-file has been reached when routines like getw are being used? You use feof.
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The example program for getw/putw can be changed to use feof:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv([];
{
int word;
FILE *dfile, *datale, *datagt;

if (arge != 2) {
fprintf (stderr, "usage: intsort filename\n");
exit(1);

}

dfile = fopen(argv[i]l, "r");

if(dfile == NULL) {
fprintf("Can’t open %s.\n", argv[1i]);
exit(1);

}

datale = fopen("dfle", "w");

if (datale == NULL) {
fprintf ("Can’t create dfle file.\n");
exit(1);

}

datagt = fopen("dfgt", "w");

if (datagt == NULL) {
fprintf ("Can’t create dfgt file.\n");
exit(1);

}

for(;;) {
if ((word = getw(dfile)) != EOF) {
if (word <= 32767 && word >= |-32767)
putw(word, datale);

else
putw(word, datagt);
} else {
if (feof (dfile))
break;
else
putw(word, datale);
}
}
exit (0);
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An infinite loop is set up around the getw/putw process. Whenever getw returns an integer
equal to EOF, feof is used to find out if end-of-file has been reached. If it has, the loop (and the
program) terminates; if not, the integer is written on dfle, and the loop continues.

Ferror is a routine which examines the specified stream to determine whether or not a read or
write error has occurred. Its syntax is

ferror (stream) ;

Ferror, like feof, is intended to clarify ambiguous return values from standard I/O routines.
Actually, only getw and putw require the use of ferror to determine if an error has occurred.
Both of these routines return EOF on end-of-file or error. Since these routines deal with integer
data, however, you need feof and ferror to determine if the EOF returned actually indicated an
error or an end-of-file, or if it’s just a —1.

If an error has occurred on a stream, ferror returns a non-zero value.

Whenever an error occurs on an open stream, a flag is set to indicate the error. It is this flag
that ferror checks to determine whether or not an error has occurred. This flag is not reset
when it is checked. Thus, if an error has occurred, the error flag for that stream remains set.
This could lead to misleading information if an ferror call indicates that an error has occurred,
when in reality the error occurred long ago. The clearerr routine clears (or resets) the error
indication flag for the specified stream. This routine should be used whenever an error has been
indicated, so that the same error is not indicated at a later time. Clearerr’s syntax is

clearerr (stream) ;
Because ferror and clearerr are used infrequently in typical programs, no examples are given

specific to their use. The feof example above illustrates the general scenario in which all three
of these routines are used.
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Re-positioning Stream 1/O Operations

There are three routines, rewind, ftell, and fseek, which enable you to move the location of the
next I/O operation on an open stream.

Rewind simply positions the next I/O operation at the beginning of the file. Its syntax is

rewind (stream) ;

For example, suppose a particular application program can put a password on a data file it uses.
This password is stored in encrypted form on the first line of the file. The line is recognized as
a password line if the first two characters are “*P”. If the file has no password line, then access
to the file is unrestricted. If a password line is found, the user is prompted for the password
before access is permitted. The following code can be used to look for a password line:

#include <stdio.h>
main(argc, argv)
int argc;

char xargv[];

FILE *pswd;
char line[256];

if(arge !'= 2) {
fprintf (stderr, "Usage: getpswd file\n");
exit(1);

}

pswd = fopen(argv[i], "r");

if (pswd == NULL) {
fprintf (stderr, "Can’t open %s.\n", argv[1]);
exit(1);

}

fgets(line, 256, pswd);
if (line[0] == ’%’ && line[1] == ’P’) {

/* ask for and check password */

} else

rewind (pswd) ;

e /* application program goes here */
exit (0);
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If the first two characters of the first line are “*P”, then code is executed which asks for and
checks a password. However, if the first line is not a password line, the file is assumed to be
unprotected, and the line just read is probably part of the data. Thus, the file must be rewound
so the data contained in the first line is available to the application program.

The ftell routine returns a long integer specifying the current position of the next I/O operation
on an open stream. This position is expressed as a byte offset relative to the beginning of the
open file. Its syntax is as follows:

ftell(stream) ;
The fseek routine enables you to re-position the next I/O operation on an open stream to any
location you wish. Its syntax is

fseek(stream, offset, ptrname);
where stream is a file pointer to the open stream, offset is a long integer specifying the number
of bytes to skip over, and ptrname is an integer indicating the reference point in the file from
which offset bytes are measured. The possible values for ptrname are:

0 move offset bytes from the beginning of the file;

1 move offset bytes from the current position in the file;

2 move offset bytes from the end of the file.

Offset can be either negative or positive, indicating backward or forward movement in the file,
respectively.

The following program illustrates the use of the ftell and fseek library routines. The program
prints each line of an n-line file in this order: line 1, line n, line 2, line n—1, line 3, ...

#include <stdio.h>
main(argc, argv)

int argc;
char *argv[];
{

char line[256];
int newlines;
long front, rear, ftell();

FILE *fp;
front = O;
rear = 0;

if(arge < 2) {
fprintf (stderr, "Usage: print filename\n");
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exit(1);
}

fp = fopen(argv[i]l, “"r");

if (fp == NULL) {
fprintf (stderr, "Can’t open %s.\n", argv[1il]);
exit(1);

}

newlines = countnl(fp) % 2;

fseek(fp, 0, 2);
rear = ftell(fp);

while(front < rear) {
fseek(fp, front, 0);
fgets(line, 256, fp);
fputs(line, stdout);
front = ftell(fp);
findnl (fp, rear);
rear = ftell(fp);

if(newlines == 1) {
if (rear <= front)
break;
}

fgets(line, 256, fp);
fputs(line, stdout);
}

exit(0);
}

countnl (fp)
FILE *fp;
{
char c;
int count = O;

while((c = getc(fp)) != EOF) {
if(c == ’\n’)

count++;

}

rewind (fp) ;

return(count) ;

}

findnl(fp, offset)
FILE *fp;
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long offset;
char c;

fseek(fp, (offset-2), 0);
while((c = getc(fp)) != ’\n’) {

fseek(fp, -2, 1);
}

}

This program uses ftell and fseek to print lines from a file starting at the beginning and the end
of the file, and converging toward the center. The countnl (count new-lines) function counts the
number of lines in the file so the program can decide whether or not to print a line in the final
loop (this prevents the middle line being printed twice in files with an odd number of lines). The
findnl (find new-line) function seeks backwards in the file for the next new-line. When found,

this positions the next I/O operation such that fgets gets the next line back from the end of the
file.

Note the use of fseek in this program. All three types of seeks are represented here. The first
fseek of the program is done relative to the end of the file. All other fseeks in the main program
are done relative to the beginning of the file. Finally, findnl contains an fseek which is relative
to the current position.

Recall the employee data routine, where each employee is described by the structure

struct emp {

char name[40] ; /* name */

char job[40]; /* job title */

long salary; /* salary */

char hire[6]; /* hire date */

char curve[2]; /* pay curve */

int rank; /* percentile ranking */
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That routine simply read in the data for 400 employees all at once. Suppose you want the
program to be selective, so that you can specify (by employee number, 1 — 400) which employee’s
information you want. This is easily done using fseek. The following program fragment shows
how:

int empno, bytes;
long total;

FILE *data;

struct emp empinfo;

/* check for usage error and open data file */

o oo

sscanf (argv[1], "%d", &empno);

bytes = sizeof (empinfo) ;

total = (empno - 1) * bytes;

fseek(data, total, 0);

fread((char *)&empinfo, sizeof(empinfo), 1, data);

/* print out desired information */

exit (0);
¥

In this program, argv[l] contains, via a command-line argument, the employee number about
whom information is desired. This employee number is converted to integer form using sscanf.
The number of bytes per employee structure is obtained using sizeof, and is stored in bytes. The
total number of bytes to skip in the data file is found by multiplying the employee number (minus
one) times the number of bytes per employee structure. This is stored in total. Then, fseek is
used to seek past the specified number of bytes, relative to the beginning of the data file. This
leaves the next I/O operation positioned at the start of the specified employee’s information.
The information is read using fread.

NOTE

If you have a stream which is open for both reading and writing, a read
operation cannot be followed by a write operation without one of the
following occurring first: a rewind, an fseek, or a read operation which
encounters end-of-file. Similarly, a write operation cannot be followed by
a read operation unless a rewind or fseek is performed.
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Stream Control Routines

The routines described here help you control certain attributes of file pointers. The routines
described are fclose, setbuf, setubuf, fflush, and freopen. .

fclose

You have already seen fclose in action in the previous example program which read an employee
data file. Fclose flushes the buffer associated with the specified stream, and, if the buffer was
allocated automatically by the standard /O system, frees the space allocated to that buffer. The
stream is then closed, breaking the connection between your file pointer and the stream.

You may be wondering why so many example programs have been written that open files but
never explicitly close them. There are two reasons why this is permissible. First, you’ll notice
that all programs in this tutorial that open files end with a call to exit. The exit system call
automatically performs an fclose for every open file in that process. Second, when a program is
compiled with cc (or fc, or pc), an exit call is automatically compiled in with your code. Keep in
mind, however, that it is generally bad programming practice to rely on the system to clean up
after you! If you explicitly open any files, you should explicitly close them when you are done.
If this is too much trouble, at least include an exit call at each termination point in the program.
(All future example programs in this article will contain fclose calls.)

Setbuf
Setbuf and setvbuf routines enable you to assign your own buffering to an open stream. Setbuf
syntax is

setbuf (stream, buffer) ;

where stream is a file pointer to an already-open stream, and buffer is a pointer to a character
array or is NULL.

Normally (i.e. without user intervention), a standard I/O buffer is obtained through a call to
malloc(3C) (memalic(2) on the Series 500) upon the first call to getc or putc (which all I/O routines
eventually call). The standard I/O system normally buffers I/O in a buffer which is BUFSIZ bytes
long. Exceptions are Stdout, which, when directed to a terminal, is line-buffered, and stderr,
which is normally unbuffered.
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Setbuf enables you to change the buffer used for all standard /O routines. For example, the
following code fragment causes the array buffer to be used for buffering:

FILE *fp;
char buffer[BUFSIZ];

fp = fopen(argv[i], "r");
setbuf (fp, buffer);

This fragment shows the correct order of events. First, the file is opened (it need not be opened
for reading), then the buffering is assigned using setbuf. From that point on, any input taken
from fp is buffered through the array buffer.

Buffering can be eliminated altogether by specifying the NULL pointer in place of the buffer
name, as in

setbuf (fp, NULL);
This causes input or output using fp to be completely unbuffered.

Setbuf is limited to buffer sizes of either BUFSIZ bytes or zero. Setbuf assumes that the char-
acter array pointed to by “buffer”is BUFSIZ bytes. Passing setbuf a (non-NULL) pointer to a
smaller array can cause severe problems during operation because the standard I/O routines
may overwrite memory following the end of the too-small buffer.

Note: Using an automatic array as a standard I/O buffer can be dangerous. Automatic variables
are only defined in the code block in which they are declared. Thus, buffering which relies on
an automatic array is only in effect during the current code block (main program or function).
If you pass a file pointer to another function, and the stream pointed to by that file pointer is
buffered using an automatic array, then memory faults or other errors can occur. Here’s the
rule: if you use an automatic array for stream buffering, the stream should be used and closed
only in the code block containing the array declaration. To avoid this restriction, use external
arrays for buffering:

external char buffer[BUFSIZ];

setbuf (fp, buffer);
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Setvbuf

Setubuf, like setbuf, enables you to assign a character array for buffering, but also provides the
means to specify the size of the buffer to be used and the type of buffering to be done. Setvbuf
syntax is

setvbuf (stream, buffer, type, size)

where stream is a file pointer to an already-open stream, buffer is a pointer to a character array
or is NULL, type tells how stream is to be buffered, and size defines how large the buffer is.
Acceptable values for type (defined in stdio.h) include:

—IOFBF Input/output is fully buffered.

—IOLBF Output is line buffered. The buffer is flushed each time a new line
is written, the buffer is full, or input is requested.

—IONBF Input/output is completely unbuffered.

If type —IONBF is specified, stream is totally unbuffered. Since no buffer is needed, values
for buffer and size are ignored. For example, the following two calls, though different, are
functionally identical:

setvbuf (fp, NULL, -IONBF, 0)
setbuf (fp, NULL)

When type is —IOFBF or —IOLBF, buffering for stream is determined by buffer and size. If
buffer is not the NULL pointer, it must point to a character array of size bytes. All buffering of
stream is then handled through this array.

FILE *fp;

char buffer [256]

char *filename;

int ... retcode;

fp=fopen(filename, "w");
retcode=setvbuf (fp, buffer, =IOFBF, 256);

if (retcode !=0) error c);

This fragment causes stream fp to be buffered through the 256-byte array buffer. Serious run-
time errors can occur if the buffer array is not the size specified in the call to setvbuf (here 256
bytes). As with setbuf, it is dangerous to use an automatic array for the buffer. Note that the
return value of setvbuf can be used to verify that the request was completed successfully.
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If buffer is the NULL pointer and type is specified as —IOFBF or —IOLBF, setvbuf automatically
allocates a buffer of size bytes through a call to malloc (3¢c) on Series 200 computers or memalic
(2) on Series 500 computers. If size is zero, a buffer of size BUFSIZ will be used. This behavior
can be used to change the buffer size for a stream even if you still want the standard I/O system
to automatically allocate the buffer. This is particularly useful when a buffer larger than the
specified BUFSIZ is desired.

FILE * fp;

char * filename;

int retcode;

fp = fopen(filename, "rt")
retcode=setvbuf (fp, NULL, -IOFBF, 2048);

if(retcode !=0) error( );

This fragment buffers stream fp through a 2048-byte buffer that is allocated by the system.

fllush
The fflush routine forces all buffered data for an output stream to be written out to that file. Its
syntax is

fflush(stream) ;
where stream is a file pointer to an output stream.

Fflush is performed automatically by fclose (and, therefore, by exit). Therefore, there is often no
reason to call fflush explicitly. Situations do arise, however, where it is necessary to manually
fflush a stream. For example, data written to a terminal is line-buffered by default, which means
that the system waits for a new-line before writing the buffer onto the terminal screen. This is
often satisfactory, but there are times when you want whatever has been written so far to be
written to the screen without waiting for the new-line. In such situations, fflush must be used.

Another situation when explicit fflushing is necessary arises whenever you have written less than
a buffer-full of data to a file, and you want the contents of that file processed by another function,
or by an HP-UX command. Since less than a buffer-full of data was written, the data is still in
the buffer; the file is still empty. Performing an fflush causes the buffered data to be written out
to the file, enabling other functions or commands to utilize the file’s contents.
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freopen
The final routine in this section is freopen. As its name implies, freopen enables you to, in a
single step, close a stream and then re-open it with a different type and/or file name. Its syntax
is

freopen(filename, type, stream);

where filename is a pointer to a character string specifying the name of the source or destination
file for the newly-created stream. Type is identical to that of fopen discussed earlier. Stream
is a file pointer to the old stream, which is closed and then re-opened. The name of the file
pointer remains the same.

For example, the following program accepts lines of data from your terminal and writes them
into a file. When only a new-line is typed from the terminal, the program quits reading data,
and echos the contents of the file to the terminal.

#include <stdio.h>
main()
{
FILE *fp, *oldfp;
char line[80], *fgets( );

fp = fopen("datafile", "w");

if (fp == NULL) {
fprintf (stderr, "Can’t create datafile.\n");
exit (1) ;

}

fgets(line, 80, stdin);
while(line[0] != "\n") {
fputs(line, fp);
fgets(line, 80, stdin);
}

oldfp = freopen("datafile", "r", fp);

if (oldfp == NULL) {
fprintf (stderr, "Can’t re-open datafile.\n");
exit(1);

3}

while(fgets(line, 80, fp) != NULL)
fputs(line, stdout);

fclose(£fp);
exit (0) ;
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Just like fopen, freopen returns a NULL pointer if an error occurs. If successful, freopen returns
the value of the old file pointer.

Freopen is commonly used to attach the names stdin, stdout, and stderr to other files, so that
the source or destination of these file pointers can be redirected. For example,

freopen("/usr/lib/data/datafile", "r", stdin);

attaches stdin to the data file /usr/lib/data/datafile. Other functions can now be called which
read from stdin, and the result is that their source of input has been redirected. Similarly,

freopen("/users/bill/archives/cal.a", "a", stdout);
attaches stdout to the indicated file, thus redirecting any future stdout data to that file.

Converting Between File Pointers and File Descriptors

A file pointer is actually a pointer to a structure containing information about a stream. This
information includes a pointer to the beginning of the buffer, a pointer to the current location in
the buffer, a flag specifying whether the stream is open for reading, writing, or both, a count of
the characters in the buffer, and an integer called a file descriptor.

System calls, such as open and creat, return a file descriptor when a file is opened. System
calls use file descriptors to refer to open files in much the same way that library routines use
file pointers. (The main difference between using a file descriptor and using a file pointer is that
a file descriptor has no associated buffering.) Since a program often contains both system calls
and library routines, a way of converting between file pointers and file descriptors is provided.

NOTE

Extreme care should be exercised when converting between file point-
ers and file descriptors. Whenever you convert a file pointer to a file
descriptor, you should perform an fflush first.

In general, you should never convert file pointers to file descriptors unless
you need a file descriptor for a system call that provides a utility not
available in the C library package (such as dup(2) or fcntl(2)). Similarly,
file descriptors should never be converted to file pointers unless a file
descriptor has been created by a system call which provides a utility
not provided in the C library package, and you want to assign system
buffering to it.
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Two routines, fileno and fdopen, provide a way to convert between the two types of parameters.
Fileno is a macro which, given a file pointer, returns the associated file descriptor. Its syntax is

fileno(stream) ;

where stream is a file pointer to an open stream whose associated file descriptor is desired.
Thus,

FILE *fp;
int fd;
fp
fd

fopen("filei", "r");
fileno(£fp);

returns the integer file descriptor in fd, associated with the file pointer fp.

The fdopen routine enables you to convert a file descriptor into a file pointer. Its syntax is
fdopen (fildes, type) ;

where fildes is an integer file descriptor obtained from the open, dup, creat, or pipe system calls.
Type is the same as that for fopen discussed earlier. Thus,

int £d;

FILE =*fp;

/* obtain fd via appropriate system call */
fp = fdopen(fd, "r");

if (fp == NULL) {

fprintf (stderr, "Can’t convert file descriptor.\n");
exit(1);

converts the file descriptor fd into a file pointer, fp. Fdopen returns a NULL pointer if the
operation fails.
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Fdopen can be useful for opening a file in a way unlike any of the standard types of fopen.

# include <fcntl.h>

int f£d4;
FILE *fp
char *filename;

fd= open(filename, O_WRONLY|O_CREAT, 0666) ;
fp= fdopen(fd,"w");
fseek(fd,0L,2)

This code fragment uses the open system call to open a file for general write access, then uses
fdopen to assign buffering to the file. The constants O_WRONLY and O_CREAT are defined
in the include file /usr/include/fcntl.n, and are described in open (2). (0_WRONLY causes open to
open the file for writing only; 0-CREAT creates the file if it does not already exist.) This technique
opens the file in a way that does not correspond exactly to any of the available types in fopen:
“w” would truncate the current file contents, “r+” would fail if the file does not already exist
(and would allow reading of the file), and “a” does not permit seeking backwards and rewriting

the current file contents.
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Inter-Process Communication

So far, you’ve been communicating between an active process (your program) and a passive
object (a file). What if you want to communicate between two active processes? Suppose you
want to create a stream between two programs, with one program (process) pumping data onto
the stream, and the other reading data from the other end. How is this done?

The popen routine exists for this purpose. Its syntax is

popen (command, type) ;

where command is a pointer to a character string specifying a command line. Type is a pointer
to a single-character string which is either r (for reading) or w (for writing).

For example, suppose you are writing a program which processes text in some way. Your
program handles normal text perfectly, but unfortunately your source files are all coded in troff
constructs. If you could only filter out all those pesky troff constructs, your program would work
fine. Cheer up! It’s easily done. There is an HP-UX command called deroff which filters out
troff constructs. All you have to do is make sure that all input to your program passes through
deroff first. Here’s how:

#include <stdio.h>
main()

{
FILE *popen(), *fp;

fp = popen("deroff /users/bin/text/*.tx", "r");
if (fp == NULL) {
fprintf (stderr, "Can’t create stream.\n");
exit(1);
}

/* begin processing text; read text from fp! */

pclose(fp);

Popen returns a file pointer to the newly-opened stream. If an error occurs, a NULL pointer is
returned. When successfully executed, popen enables your program to read from the file pointer
fp, the data from which is the standard output from the deroff command. In this example,
deroff is invoked such that it processes all files in /users/bin/text which end with “.tx”. Note
that popen’s return value must be declared explicitly because it is not declared in stdio.h.

58 Using C Library Routines



Because deroff processes stdin if no arguments are given, the following popen call

fp = popen("deroff", "r");

enables your program to receive filtered text from stdin instead of from ordinary files. The
result of executing the previous example is exactly the same as if you had typed

deroff /users/bin/text/*.tx | yourprogram
at your keyboard in response to a shell prompt.

Streams that are opened by popen must be closed with pclose. Thus,

pclose(£fp);
closes the stream created in the previous example.

If a type of w is specified instead of r, then the data flow is reversed, with the result that your
program supplies the data for the specified command.

Note that, though popen’s return value is called a file pointer, it is actually somewhat different
than the file pointers you are already familiar with. In general, a file pointer returned by popen
should not be used in those previously-discussed library routines which modify file pointers
returned by fopen. Also, file pointers opened by popen must be closed with pclose; fclose is not
sufficient.

So far, popen has been characterized as a “filter-maker”, in that streams to or from a command
have been created so that data can be modified in some way before being passed on. Sometimes,
however, popen is used to execute a command which supplies information valuable to the
program. For example, the find command accepts dot (.) as a valid directory name. Upon
receipt of a dot, find discovers the actual path name of dot by creating a stream from the pwd
command, as follows:

char dir[100];
FILE *popen(), *fp;

fp = popen("pwd", nrn);

if (fp == NULL) { '
fprintf (stderr, "Can’t execute pwd.\n");
exit(1);

}

fgets(dir, 100, fp);

pclose(£fp);
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The preceding example reads the output of the pwd command into the character array dir, thus
supplying the current value of dot. The following program creates a list of the login names of
users currently logged in:

#include <stdio.h>

main()

{
char name[10], line[80], *fgets();
FILE *popen(), *fp;

fP = popen(“who", "1‘");

if (fp == NULL) {
fprintf (stderr, "Can’t execute who.\n");
exit(1);

}

printf ("Users currently logged in:\n");
while(fgets(line, 80, fp) != NULL) {
sscanf (line, "%s", name);
printf ("\t%s\n", name);
}

pclose(£fp);
exit(0);

A stream is created for reading from the who command. Each line from who is read, and the
first field from each line is read and printed.

You may have only one popen-ed stream in a process at any given time.
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Part 2:
Math Routines

Described in this section are absolute value, power, square root, logarithmic, trigonometric, and
other functions performing many different kinds of mathmatical calculations.

An include file named math.h exists for use with these routines. Math.h contains type dec-
larations of all the math routines which do not return an int, and a definition of the constant
HUGE. Many math routines return a “huge” value when an error occurs, so HUGE is set equal
to this “huge” value, enabling you to check for errors easily. You need not include math.h in
your program if you remember to explicitly declare each math routine’s return type, and if you

don’t need HUGE.

Some of the math routines reside in the standard C library, /lib/libc.a. This library also contains
all the standard I/O routines and the system calls described in section 2 of the HP-UX Reference
manual. This library is loaded automatically by the C compiler, cc, so you need not worry about
explicitly telling the linker (Id) to search this library to find the functions contained in it. However,
many math routines reside in the library /lib/libm.a, which is not automatically loaded. Thus, if

you try to compile a program containing a math routine from libm.a, you get a complaint from
Id.

This is fixed in the following way. Suppose you have a program named yourprog.c; and this
program contains a math function from libm.a. To compile the program, type

$ cc yourprog.c -1lm

The —1 option causes Id to look for and search a library named /lib/libx.a, where x is the letter
specified after the —1 option. Thus, this command line tells Id to search /lib/libm.a.

How do you know which functions reside in which library? The HP-UX Reference manual
provides guidance here. /lib/libc.a contains all of section 2, plus all routines in section 3 having
the suffixes (3C) and (3S). /lib/libm.a contains all the routines in section 3 having the suffix
(3M). To aid you in deciding how to compile your programs, the routines discussed below
include references to the HP-UX Reference manual.
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Absolute Value Functions

The abs (abs(3C)) and fabs (found under floor(3M)) functions return the absolute value of their
integer or floating-point argument, respectively. For example, the following program calculates
integer absolute values until a zero is entered from the keyboard:

main()

{

3

int value;

printf ("Enter value: ");

scanf ("%d", &value);

while(value != 0) {
printf ("Absolute value of %d is %d.\n", value, abs(value));
printf ("Enter value: ");
scanf ("%d", &value);

}

exit (0);

The floating-point equivalent of the previous program is shown below:

main()

{

}

double value, fabs();

printf ("Enter value: ");

scanf ("41f", &value);

while(value != 0.0) {
printf ("Absolute value of %.12g is %.12g.\n", value, fabs(value));
printf ("Enter value: ");
scanf ("%1f", &value);

}

exit(0);

The first program above can be compiled without the —1 option, but the second must be compiled
using the —Im option.
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Power, Square Root, and Logarithmic Functions

This section describes the following five functions, all of which are found under exp(3M) in the
HP-UX Reference manual:

exp(x) returns e to the x power.

log(x) returns the natural logarithm of x (In(x)).
log10(x) returns the common logarithm of x (log(x)).
pow(x, V) returns x to the y power.

sqrt(x) returns the square root of x.

All functions return double values, and expect double arguments. Since their syntaxes are
similar, the following logarithm calculator example suffices for all five of these functions:

#include <math.h>
main(arge, argv)

int argc;
char *argv[];
{

double value;
sscanf (argv[1], "%1f", &value);

printf ("Natural logarithm of %.12g = %.12g\n", value, log(value));

printf ("Common logarithm of %.12g = %.12g\n", value, loglO(value));
}

This program accepts its single argument, and returns the natural and common logarithms of
that argument.

All five of these functions must be compiled using the —lm option to cc.

Using C Library Routines 63



Trigonometric Functions

A full set of trigonometric functions are provided in the math library. They are as follows:

sin(x) returns the sine of the radian argument x.

cos(x) returns the cosine of the radian argument x.

tan(x) returns the tangent of the radian argument x.

asin(x) returns the arc sine of x in the range -pi/2 to pi/2, where —1 <= x <= 1.
acos(x) returns the arc cosine of x in the range 0 to pi, where —1 <= x <= 1.
atan(x) returns the arc tangent of x in the range -pi/2 to pi/2.

atan2(y, Xx)  returns the arc tangent of y/x in the range -pi to pi.

sinh(x) returns the hyperbolic sine of the radian argument x.
cosh(x) returns the hyperbolic cosine of the radian argument x.
tanh(x) returns the hyperbolic tangent of x.

The following program uses some of these routines, as well as two routines from the previous
section, to obtain the dimensions and angles of a right triangle:

#include <stdio.h>
#include <math.h>
main()
{
double sideA, sideB, sideC, anga, angb, tempC;
double pi = fabs(acos(-1.));
double torads = pi/180.;
double todegs = 180./pi;
double angc = 90.;

printf ("Using the following conventions for sides and angles:\n");
triangle();

printf ("\nEnter all known information:\n");
printf("\tA = ");

scanf ("%1f", &sideA);

printf("\tB = ");

scanf ("%1f", &sideB);

printf ("\tC = ");

scanf ("%1f", &sideC);

printf ("\tAngle a = ");

scanf ("%1f", &anga);

printf ("\tAngle b = ");

scanf ("%1f", &angb);
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if (sideA && sideB && sideC) {
tempC = sqrt(pow(sideA, 2.) + pow(sideB, 2.));
if (fabs(sideC - tempC) > 0.001) {
printf("Sides invalid.\n");

exit(1);
}
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;

} else if(sideA && sideB) {
sideC = sqrt(pow(sideA, 2.) + pow(sideB, 2.));
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;
} else if(sideB && sideC) {
sideA = sqrt(pow(sideC, 2.) - pow(sideB, 2.));
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;
} else if(sideA && sideC) {
sideB = sqrt(pow(sideC, 2.) - pow(sideA, 2.));
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;
} else if(sideA) {
if (anga && angb) {
sideC = sideA/cos(angb*torads) ;
sideB = sqrt(pow(sideC, 2.) - pow(sideA, 2.));
} else if(anga) {
sideC = sideA/sin(anga*torads) ;
sideB = sqrt(pow(sideC, 2.) - pow(sideA, 2.));
angb = 90. - anga;
} else if(angb) {
sideC = sideA/cos(angb*torads) ;
sideB = sqrt(pow(sideC, 2.) - pow(sideA, 2.));
anga = 90. - angb;

} else {
printf ("Insufficient information.\n");
exit(1);

3

} else if(sideB) {
if (anga && angb) {
sideC = sideB/sin(angb*torads) ;
sideA = sqgrt(pow(sideC, 2.) - pow(sideB, 2.));
} else if(anga) {
sideC = sideB/cos(anga*torads) ;
sideA = sqrt(pow(sideC, 2.) - pow(sideB, 2.));
angb = 90. - anga;
} else if(angb) {
sideC = sideB/sin(angb*torads);
sideA = sqgrt(pow(sideC, 2.) - pow(sideB, 2.));
anga = 90. - angb;
} else {
printf ("Insufficient information.\n");
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exit(1);

}
} else if(sideC) {
if (anga && angb) {
sideA = sideC * cos(angb*torads);
sideB = sideC * sin(angb*torads);
} else if(anga) {
sideA = sideC * sin(anga*torads);
sideB = sideC * cos(anga*torads) ;
angb = 90. - anga;
} else if(angb) {
sideA = sideC * cos(angb*torads) ;
sideB = sideC * sin(angb#*torads);
anga = 90. - angb;
} else {
printf ("Insufficient information.\n");
exit(1);
}
} else {
printf ("Insufficient information.\n");
exit(1);
}

printf ("\n\tSide
printf ("\tSide B
printf ("\tSide C

%.2f\t\tAngle a = %.2f degrees\n", sideA, anga);
%.2f\t\tAngle b = %.2f degrees\n", sideB, angb);
%.2f\n", sideC);

nun >
]

}

triangle()

{
FILE *fopen(), *tri;
char line[50], *fgets();

tri = fopen("triangle", "r");

if (tri == NULL) {
printf ("Cannot open triangle file.\n");
exit(1);

}

while(fgets(line, 50, tri) != NULL)

fputs(line, stdout);
fclose(tri);
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The triangle function prints out the contents of a file in the current directory called triangle.
The contents of this file should contain an ASCII approximation of a right triangle:

/1

/|

/ |

/ al

/ |
c/ | B

/ |

/ |

/ |

/b c _|

[ I_t

A

This triangle made up of slashes, vertical bars, and underscores, showing the naming convention
for the sides and angles. The program then asks for the known data; enter a value of zero for
those parameters that are unknown. The dimensions and angles are then calculated based on
the data you have supplied. If there is insufficient information, you are told about it.

The hyperbolic functions are found under sinh(3M) in the HP-UX Reference manual. All others

are found under trig(3M). Thus, the —Im argument must be used when compiling code containing
these functions.
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Miscellaneous Functions

Calculating Upper and Lower Bounds

Two functions, floor and ceil (see floor(3M)), enable you to obtain integers (returned as doubles)
defining an upper and a lower bound for a number or a series of numbers. Floor returns a
double precision representation of the the largest integer which is still not greater than floor’s
argument. Similarly, ceil returns a double precision representation of the smallest integer which
is still greater than ceil’s argument.

The following program returns the floor and ceiling values for the number specified as its argu-
ment:

#include <math.h>
main(argc, argv)
int argc;

char *argv[];

double value;

sscanf (argv[1], "%1f", &value);
printf ("Floor = %g; Ceiling = %g\n", floor(value), ceil(value));
}

If you type this in and run it, you see that floor and ceil provide two double values representing
the smallest range in which the numbers used to obtain that range will fit. For example, if you
have a program which reads three values from a source file, and these values are 4.79, 19.6,
and 21.1, you can get the smallest possible range in which these numbers fit by running floor
on each number (and keeping the smallest floor value), and then running ceil on each number
(and keeping the largest ceiling value). For the above three numbers, this yields a floor value of
4, and a ceiling value of 22.

Code containing these functions must be compiled using the —Im cc option. Math.h need not
be included if you remember to explicitly declare that these functions return double values.
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Calcuiating Remainders

This section covers two functions, fmod and modf. The fmod function (see floor(3M)) returns the
remainder (in double precision form) resulting from dividing fmod’s first argument by its second.
For example,

fmod (10., 4.)

divides 10 by 4, and returns the remainder (2, in this case). The following program accepts two
numbers, divides the first by the second, and displays the results in a form showing the number
of times the divisor goes evenly into the dividend, and the remainder, if any.

#include <math.h>
main(argc, argv)
int argc;

char =argv[];

int result;
double number, div, rem;

sscanf (argv[1], "%1f", &number);
sscanf (argv[3], "}1f", &div);

result = number/div;
printf("%g = (%4) (%g)", number, result, div);
if ((rem = fmod (number, div)) != 0.0)

printf (" + %g\n", rem);
}

This program is set up so that it can be invoked in sentence style. If you name the compiled
version of this program “divide”, then you can say

$ divide 33.27 by 11
Since argv[2] is ignored in the code, “by” is harmless, and the two numbers are parsed correctly.

Code containing a call to fmod must be compiled with the —Im cc option. However, you need
not include math.h in your program, as long as you declare fmod’s return type appropriately.

The other function, modf (see frexp(3C)), is not really a remainder function in the same sense
that fmod is a remainder function. In fmod, a division actually takes place. In modf, however,
no division takes place. Modf simply accepts a double value, and splits it into its integer and
fractional parts. Its syntax is

modf (value, iptr);
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where value is the number to be split into two parts, and iptr is a pointer to a double variable
where the integer part of value is to be stored. Modf’s return value is the signed fractional part
of value.
The following program shows modf in action:

main(argc, argv)

int argc;
char *argv([];

double value, iptr, frac, modf();
sscanf (argv[1], "%1f", &value);
frac = modf(value, &iptr);

printf("Integer part: %g; Fractional part: %g\n", iptr, frac);
}

The program accepts one argument, the value, and then prints the integer and fractional parts
of that value. Note that the address of iptr is passed to modf, because modf expects the address
of a double variable where the integer part can be stored.

Code containing calls to modf does not require the —lm option during compilation. Also, the
math.h include file is of no use to modf, so it can be omitted.

Calculating A Hypotenuse

The hypot function (see hypot(3M)) returns the square root of the sum of the squares of its two
arguments, yielding the length of the hypotenuse of a right triangle, or the Euclidian Distance.

Thus, in the previous program which calculated the sides and angles of a right triangle, the line
of code which read

sideC = sqrt(pow(sideA, 2.) + pow(sideB, 2.));

could be replaced with

g8ideC = hypot(sideA, sideB);
thus eliminating one function call (hypot contains a call to sqrt).

Code containing calls to hypot must be compiled using the —Im option to cc.
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Generating Random Numbers

The rand and srand routines (see rand(3C)) exist for the generation of random numbers. Rand is
the random number generator itself, and srand enables you to specify a starting point (or seed)
for rand.

The following program simply sets up an infinite loop and lets rand run for awhile (to terminate
it, just press BREAK, or its equivalent):

main()

{
unsigned value;
srand (1) ;
for(;;) {

value = rand();
printf ("Random number is %u\n", value);
sleep(1);

Note that rand and srand deal only with unsigned integers. If you let this program run for
awhile, you’ll notice that the random values returned are quite large, and don’t often venture
below 1000. If your application requires smaller random numbers, divide the value returned by
rand by some appropriate divisor until a number in the desired range is obtained.

Srand initializes the random number generator to a particular starting point. In the above
program, 1 is used, but you can specify any positive integer you like.

The sleep library routine causes the program to “pause” for the number of seconds specified (1,
in this case).
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Floating-Point Exponentiation Routines

Two routines, frexp and Idexp (see frexp(3C)), are covered in this section. Frexp accepts a
double value, and returns two values, x and n, such that

value = x * 2°n

where x is a double quantity of magnitude less than 1, and n is an integer exponent. Frexp’s
syntax is

frexp(value, eptr);

where value is the value to be processed, and eptr is a pointer to an integer variable where the
exponent n is to be stored. The quantity x is returned as frexp’s return value.

The following program accepts a number argument and uses frexp to output that number’s
representation in the form shown above:

main(argc, argv)
int argc;
char *argv([];

double value, x, frexp();
int eptr;

sscanf (argv[1], "%1f", &value);

x = frexp(value, &eptr);

printf("%g = %g * 2°%d\n", value, x, eptr);
}

Ldexp accepts a double value and an integer exponent exp, and returns a double quantity equal
to

<value> * 2= <exponent>
The following program accepts two number arguments, value and exp, and outputs the result:

main(argc, argv)

int argc;
char *argv[];
{

double value, result, ldexp();
int exp;

sscanf (argv[1], "%1f", &value);

sscanf (argv[2], "%d", &exp);

result = ldexp(value, exp);

printf("%g * 2°%d = %g\n", value, exp, result);
}

Neither of these routines require math.h or the use of the —Im cc option.

72 Using C Library Routines



Part 3:
String Manipulations

Character Conversion
and Classification

This section discusses those routines found under conu(3C) and ctype(3C) which enable you to
convert between upper- and lower-case, and classify characters as digits, non-printing, upper-case,
etc.

Converting Between Uppercase and Lowercase

Four routines are documented under conv(3C) which enable you to convert between upper- and
lowercase. They are toupper, tolower, _toupper, and _tolower.

Toupper and tolower are functions which accept a single integer argument in the range —1
through 255. If the integer taken as a character represents a lower-case character, toupper
returns the corresponding upper-case character. Similarly, tolower returns the corresponding
lower-case character. Both routines return the argument unchanged if it does not represent a
lower-case character (toupper) or an upper-case character (tolower).

_toupper and _tolower are macros defined in ctype.h. _toupper accepts a single integer argument
which must represent a lower-case character; the corresponding upper-case character is returned.
Similarly, _tolower must be given an upper-case character, and returns the corresponding lower-
case character. If an argument is specified which is not a lower-case character (_toupper) or an
upper-case character (_tolower), garbage is returned.

The macro versions of these routines are faster than the functions, so if you can guarantee that
only lower-case or upper-case characters are passed to the macros, you should probably use
them. However, the function versions are handy for tasks like

for(i=0; array[i] != NULL; i++)
array[i] = toupper(array[il);

which converts every lowercase character found in array to uppercase. The functions enable
you to be more lenient about the arguments passed to them. In the above program fragment,
no argument checking is needed; if the argument isn’t a lowercase character, it is returned
unchanged.
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Character Classification

The ctype(3C) entry in the HP-UX Reference lists routines which test their single argument and
return a non-zero value if the test is positive, and O otherwise.

All of these routines are macros defined in ctype.h. Because their syntaxes are identical, the
following example suffices for all ctype macros:

‘fc;r.(i=0; array[i] != NULL; i++) {
if (islower(array[il))
array[i] = _toupper(arraylil);

This program fragment shows one way to change all occurrences of a lower-case character in
array to upper-case using the macro _toupper. The macro islower is used to make sure that only
lower-case characters are passed to _toupper.
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String Manipulation

String(3C) in the HP-UX Reference manual documents an extensive list of string manipulation
routines enabling you to perform several operations on character strings. This section describes
the string(3C) package in detail.

Concatenating Strings

Strcat and strncat enable you to append a copy of one string onto the end of another. Their
syntaxes are:

strcat(sl, s2);
strncat(sl, s2, n);

where s1 and s2 are character pointers to NULL-terminated character strings. Strcat appends
the entire string pointed to by s2 (up to the first NULL character encountered) onto the end of
string s1. Strncat does the same thing, except that at most n characters are appended to sl
(or up to a NULL character, whichever comes first). (Note that string s2 need not be NULL-
terminated when using strncat if n is less than or equal to the length of s2.) Both routines return
a character pointer to the NULL-terminated result.

Neither of these routines checks to make sure that there is room in sI for the additional
characters of s2. Thus, to be safe, s1 should always be a declared array having plenty of space
for the additional characters of s2, plus a terminating NULL character.

Copying Strings
Strepy and strncpy copy one string of characters into another. Their syntaxes are:

strepy(sl, s2);
strnepy(sl, s2, n);

where s2 is a character pointer to the string to be copied, and sI is a character pointer to the
beginning of the string into which the contents of string s1 are copied. Strcpy copies the entire
string, up to (and including) the first NULL encountered. Strncpy copies up to n characters, or
up to (and including) the first encountered NULL, whichever occurs first. (String s2 need not
be NULL-terminated when using strncpy if n is less than or equal to the length of s2.) Both
routines return the value of sI.
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The following program uses the strcat routine discussed earlier and strcpy to build a character
string representing the lower-case alphabet, one character at a time.

#include <stdio.h>

main()

{
int b = ’b’, z = ’z’, i;
char alpha[30], chr[4];

chr[1] = NULL;
strcpy(alpha, "a");
printf ("%s\n", alpha);

for(i = b; i <= z; i++) {
chr[0] = i;
strcat(alpha, chr);
printf ("%s\n", alpha);

The array chr is always going to be a two-character array consisting of the next character in
the alphabet followed by NULL. Thus, the second element of chr is set to NULL early in the
program. The first chr element is then successively set to the next lower-case character in the
for loop, and the resulting two-character string is concatenated onto the end of the alphabet
assembled so far in alpha. Note the use of strcpy to initialize alpha. Remember that C transforms
one or more characters enclosed in double quotes into a character pointer to those characters
followed by a NULL. Thus, the strcpy statement above copies the character “a” followed by a
NULL character into alpha.

There are some things to be aware of when using strcat, strncat, strcpy, and strncpy. These
routines all modify string s1 in some way, but none of them check for overflow in that string.
Therefore, be sure there is enough room in sl to hold the added or copied characters plus a
terminating NULL. Also, be sure you use a character array for s1 (not just a character pointer),
especially when using strcat or strncat. This is because an explicitly-declared array has sufficient
memory allocated to it to contain all of its elements, but a character pointer simply points to a
single location in memory. Concatenating a string to the end of a string contained in an array is
guaranteed to work, provided the array is large enough. However, concatenating a string to a
string of characters referenced by a simple character pointer is dangerous, since the concatenated
characters could overwrite data in memory. For example,

char array[100], *ptr = "abcdef";

strcat(array, ptr);
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works fine, since you are guaranteed that 100 storage elements have been set aside for the
array. However,

char *ptrl = "abcdef", *ptr2 = "ghijkl";

strcat(ptrl, ptr2);

is asking for trouble. Although C makes sure that there is enough room for the initializing strings
(“abcdef” and “ghijkl” in this example), there are no guarantees that there is enough room to
add characters to the end of one of these strings. Therefore, the last fragment could easily
overwrite valid data occurring after the string pointed to by ptrl.

Since string s2 is not modified, you can use arrays or character pointers with no ill effects.

Comparing Strings

Stremp and strncmp compare two strings and return an integer indicating the result of the
comparison. Their syntaxes are:

stremp(sl, s2);
strncmp(sl, s2, n);

where s1 and s2 are character pointers to the NULL-terminated character strings to be compared.
Stremp compares the entire strings, stopping as soon as the result is determined. Strncmp
compares at most n characters of both strings (neither string need be NULL-terminated if n is
less than or equal to the length of the shorter string). The integer returned uses the following
convention:

<0 s1 is lexicographically less than s2;
=0 s1 and s2 are equal;
>0 s1 is lexicographically greater than s2.

The following program fragment uses strncmp to analyze the contents of a file coded with the
man macros (see man(7)). It reads each line of the file and keeps a count of the number of times
selected macros are used, and prints a summary of its findings at the end.

#include <stdio.h>
main(argc, argv)

int argc;
char *argv[];
{

char *fgets(), 1ine[100];
FILE *fp;
int nsh, npp, ntp, nrs, nre, npd, nip, nmisc, nlines;
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nsh = npp = ntp = nrs = nre = npd = nip = nmisc =

if(arge '= 2) {
fprintf (stderr, "Usage: count file\n");
exit(2);

}

fp = fopen(argv[i], "r");
if (fp == NULL) {

fprintf (stderr, "Can’t open %s.\n", argv[i]);

exit(
}

1);

while(fgets(line, 100, fp) != NULL) {
if (strncmp(line, ".SH", 3) == 0)

else
else
else
else
else
else
else

nline

}

printf ("No.
printf ("No.
printf ("No.
printf ("No.
printf ("No.
printf ("No.
printf ("No.
printf ("No.
printf ("No.

fclose(fp)
exit (0) ;
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nsh++;
if (strncmp(line, ".PP", 3) == 0)
npp++;
if (strncmp(line, ".TP", 3) == 0)
ntp++ ;
if (strncmp(line, ".RS", 3) == 0)
nrs++,
if (strncmp(line, ".RE", 3) == 0)
nre++;
if (strncmp(line, ".PD", 3) == 0)
npd++;
if(strncmp(line, ".IP", 3) == 0)
nip-H- ;
if(line[0] == *.?)
nmisc++;
8++;

of lines: %d\n\n", nlines);

of .SH’s: %d\n", nsh);

of .PP’s: %d\n", npp);

of .TP’s: %d\n", ntp);

of .RS’s: %d\n", nrs);

of .RE’s: %d\n", nre);

of .PD’s: %d\n", npd);

of .IP’s: %d\n", nip);

of misc. macros: %d\n", nmisc);

nlines

0;



In the above program, strncmp is used to compare the first three characters of each line read.
If the first three characters match a particular macro, the appropriate counter is incremented.
If the line begins with “.”, but is not one of the macros being searched for, the “miscellaneous”
counter is incremented. The total number of lines in the file is also given.

Finding the Length of a String

The strlen routine returns an integer specifying the number of non-NULL characters in a string.
Its syntax is:

strlen(s);

where s is a character pointer to the NULL-terminated string whose length is to be taken. For
example, if you execute

len = strlen(string) ;

then the integer len contains the total number of non-\s-INULL\s+1 characters in the string
pointed to by string. Thus,

string[len]
points to the terminating NULL in string
Finding Characters in Strings

The strchr, strrchr, and strpbrk routines enable you to locate a particular character within a
string.

Strchr and strrchr return a character pointer to an occurrence of a specified character in a string.
Their syntaxes are:

strchr(s, ¢);
strrchr(s, ¢©);

where s is a character pointer to the string of interest, and c is a variable of type char specifying
the character to search for.
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Strchr returns a character pointer to the first occurrence of character c in string s. Similarly,
strrchr returns a character pointer to the last occurrence in string s. Both routines return a
NULL if the character does not occur in the string pointed to by s. For example,

char *ptr, *strchr(), string[100];

while((ptr = strchr(string, ’'@’) != NULL)
*ptr = ’#7;

replaces all occurrences of “@” in the array string with “#”, starting from the beginning of the
array and working toward the end. The same operation can be done using
while((ptr = strrchr(string, ’@’)) != NULL)
*ptr = '#7;
which replaces all @’s with #’s, starting from the end of the array, working backward toward
the beginning.

The strpbrk routine returns a character pointer to the first occurrence in string s1 of any character
contained in string s2, or NULL if none of the characters in s2 occur in s1. Its syntax is:

strpbrk(sl, s2);
For example, suppose you have to read lines of input in which are embedded numerical data
which must be read. For simplicity, assume that the following conventions are used:

e Positive numbers do not begin with “+”;

e Fractional numbers always begin with zero, as in 0.25;

e The first occurrence of a digit in the string signals the beginning of the number to be read.

Given these rules, the following code fragment does the job:

char 1ine[100], *chrs = "-0123456789", *ptr;
float value;

ptr = strpbrk(line, chrs);
sscanf (ptr, "%f", &value);

The character pointer chrs is initialized to point to a string of characters which might introduce
the embedded number. Strpbrk then finds the first occurrence of one of these characters in line,
and returns a pointer to that location in ptr. Finally, ptr is passed to sscanf, which interprets
ptr as if it were a pointer to the beginning of a string from which input is to be taken. The
number is read correctly because ptr points to the beginning of a number, and because the %f
conversion terminates at the first inappropriate character.
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Miscellaneous String Routines

Finding Characters Common to Two Strings

The strspn and strcspn routines return an integer giving the length of the initial segment of string
sl which consists entirely of characters found in string s2. Strcspn is similar, but returns an
integer giving the length of the initial segment of sI which consists entirely of characters not
found in string s2. Their syntaxes are:

strspn(sl, s2);
strespn(sl, s2);

For example, suppose you have the following two strings:

"A tattle-tale never wins."

for string s1, and

" -Aatle"

for s2. Executing

strspn(sl, s2);

with the strings shown returns a value of 14, since the first 14 characters in s1 all occur in s2
— “A tattle-tale “. If you execute

strcspn(si, s2);

using the same strings, you get O, because there is no initial segment of s1 which contains
characters not found in s2.
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Breaking a String into Tokens

A token is a string of characters delimited by one or more token delimiters. The strtok routine
divides string sI into one or more tokens. The token separators consist of any characters
contained in string s2. lts syntax is:

strtok(sl, s2);

where sl is a character pointer to the string which is to be broken up into tokens, and s2 is
a character pointer to a string consisting of those characters which are to be treated as token
separators.

Strtok returns the next token from s1 each time it is called. The first time strtok is called, both
s1 and s2 must be specified. On subsequent calls, however, s1 need not be specified (a NULL is
specified in its place). Strtok remembers the string from call to call. String s2 must be specified
each call, but need not contain the same characters (token separators) each time.

Strtok returns a pointer to the beginning of the next token, and writes a NULL character into
s1 immediately following the end of the returned token. Strtok returns a NULL when no tokens
remain.

For example, suppose you are reading lines from /etc/gettydefs, which is the speed table for
getty(1M) — see gettydefs(5). The lines in this file contain several fields delimited by pound signs
(#). Thus, the following code could be used to read the fields of each line:

int count = 0;
char *delims = "#", *token, *argl, *strtok(), line[256];
argl = line;

while((token = strtok(argl, delims) != NULL) {
count++;
printf("field %d: %s\n", count, token);
if(count == 1)
argl = NULL;
}

This code sees to it that strtok’s first argument is NULL after the first call. Also, note that

delims did not change from call to call, but it could have. This greatly increases the power of
strtok, since it enables you to change the token delimiters between calls.
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Part 4:
Date and Time Manipulation

Ctime(3C) describes a set of routines which enable you to access the date and time as maintained
by the system clock. This package knows about daylight saving time, and automatically converts
between standard time and daylight saving time when appropriate.

Most of the ctime routines require the quantity returned by time(2), which is the number of
seconds that have elapsed since 00:00:00 GMT (Greenwich Mean Time), January 1, 1970.

The ctime routine converts the time(2) value into a 26-character ASCII string of the form

Fri May 11 09:53:03 1984\n\0

where “\n” is a new-line character, and “\0” is a terminating NULL character. Ctime’s syntax
is:

ctime (value);

where value is a pointer to a long integer value representing the number of elapsed seconds
since 00:00:00 GMT, January 1, 1970 (as returned by time(2)). Note that value is a pointer to
the quantity returned by time(2), not just the quantity itself. Using time(2) and ctime, you can
write your own simplified version of the date(1) command:

#include <stdio.h>
main()
{
char *str, *ctime();
long time(), nseconds;

nseconds = time((long *)O0);

str = ctime(&nseconds);
printf ("%s", str);
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The rest of the routines in ctime(3C) require the include file time.h, which contains the definition
of a structure called tm. This structure is made up of several variables which contain the various
components of the date and time. It looks as follows:

struct tm {
int tm_sec;
int +tm_min;
int +tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int +tm_isdst;

};

The meaning associated with each structure member is:

tm_sec the “seconds” portion of the system’s 24-hour clock time;
tm_min the “minutes” portion of the system’s 24-hour clock time;
tm_hour the “hours” portion of the system’s 24-hour clock time;

tm_mday the day of the month, in the range 1 thru 31;

tm_mon the month of the year, in the range 0 thru 11 (0 = January);

tm_year the current year — 1900;

tm_wday the day of the week, in the range O thru 6 (0 = Sunday);

tm_yday the day of the year, in the range O thru 365;

tm_isdst a flag which is non-zero if daylight saving time is in effect.

The localtime and gmtime routines accept a pointer to a quantity such as returned by time(2),
and fill in the various components of the tm structure. Localtime corrects the time for the local
time zone and possible daylight saving time, while gmtime converts directly to GMT time (this

is the time used by HP-UX). Both routines return a pointer to a structure of type tm which can
be used to access the various components of the tm structure.
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For example, the following code fragment assigns values to the tm structure members for the
local time zone:

#include <time.h>

struct tm *ptr, *localtime();
long time(), nseconds;

nseconds = time((long *)0);
ptr = localtime(&nseconds);

Once this code is executed, you can use ptr to access the different components of the local time.
For example, ptr—>tm_mon references the month of the year, and ptr—>tm_wday references
the day of the week. (Gmtime is used in exactly the same way, so this example suffices for it
also).

The asctime routine converts the time contained in a tm structure into \s-1ASCII\s+1 represen-
tation such as that returned by date(1) and ctime. Its syntax is:

asctime(ptr) ;

where ptr is a pointer to a structure of type tm whose members have previously been assigned
values with localtime or gmtime, or explicitly by you. Asctime returns a character pointer to the
same NULL-terminated 26-character string as returned by ctime.

Asctime provides a way for you to obtain the current time, modify it explicitly in some way, and
then print the result in ASCII form. The date command shown earlier can be re-written using
localtime and asctime:

#include <stdio.h>

#include <time.h>

main()

{
long time(), nseconds;
struct tm *ptr, *localtime();
char *string, *asctime();

nseconds = time((long *)0);
ptr = localtime(&nseconds);

/* the user may modify the current time in tm here */
string = asctime(ptr);

printf("%s", string);
}
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This program illustrates a rather indirect way to obtain the date, but it does enable you to modify
the date stored in tm before you print it out. If all you want to do is print the date, the quickest
way is to use the time/ctime combination.

Of all the ctime routines, perhaps the most useful is localtime. It enables you to break the current
time up into referencable chunks which can then be examined for such applications as personal
calendar programs, program schedulers, etc. Many of the tm values can be used as indices into

arrays containing strings identifying months and days. For example, declaring an external array
like

char #month[] = { "January", "February", "March", "April",
"May", "June", "July", "August", "September",
"October", "November", "December"
3

enables you to use tm_mon as an index into this array to obtain the actual month name. The
same thing can be done with tm_wday if you initialize an array containing the names of the
days of the week. The ctime(3C) package makes it easy to design programs which depend upon
the time or date. Try creating your own versions of calendar(1), at(1), or even cron(1M)!
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